

Integrating Virtual Reality in Occupational Therapy Education

Anna Marie Lassen & Rina Juel Kaptain

University College of Northern Denmark

DOI: <https://doi.org/10.54337/ecrpl25-10933>

Abstract

In the early semesters of the occupational therapy education, students often struggle to develop a deeper understanding of clinical practice, their professional responsibilities, and the challenges faced by future clients. Virtual reality (VR) offers the potential to immerse students in specific situations, such as everyday life scenarios or health-related experiences, thereby enhancing their understanding. This study builds on the theoretical foundation that VR can support reflection and subsequent action, contributing to practice-based learning. The teaching was guided by the Reflective Practice-Based Learning (RPL) principle 4: 'The Good Example', in which students share a common experience that serves as a basis for collective reflection. The study aimed to explore the experiences of both students and educators when integrating VR into occupational therapy education. Two types of data were collected: 1) Evaluation data – four VR sessions were conducted during relevant teaching activities, followed by short questionnaires addressing the experiences of both students and educators; 2) Workshop data – students tested VR and brainstormed possible applications in education. The TPACK model, along with the analytic elements from RPL Experience, Thinking, and Action, was used to support the analysis. Findings indicate that VR provides a safe and realistic environment in which students can observe and experience clinically relevant scenarios. It enhances empathy, deepens understanding of client challenges, and helps bridge the gap between theory and practice. Overall, based on the students' expressed interests and suggestions, there is clear potential for further development and exploration of VR in occupational therapy education.

Keywords

Virtual Reality, Reflection, Learning, Occupational Therapy program

Background and Problem Statement

Educators have observed that occupational therapy students in the early semesters of their program struggle to develop a deeper understanding of the clinical practice they will engage in during their upcoming clinical practice. They also face challenges in comprehending the professional tasks that occupational therapists typically perform, as well as the diverse patient groups they will encounter. Furthermore, prospective employers expect occupational therapy students to have experience with various types of technology and to have acquired specific technological competencies. Similarly, students express in semester evaluations during the initial semesters that they only gain an understanding of what occupational therapy entails and how it differs from other health professions relatively late in their studies.

Virtual reality (VR) technology has garnered attention in educational research for its potential to enhance learning experiences across various disciplines. Studies indicate that VR can improve student engagement, knowledge retention, and skill acquisition by providing immersive and interactive environments. A systematic review found that VR enables nursing students to actively participate in realistic scenarios, thereby enhancing their understanding of theoretical concepts and offering hands-on training in a safe setting (Liu et al., 2023). A Norwegian study (Høye & Severinsen, 2024) shows that students in health and social care education perceive VR simulation as a useful tool for preparing for professional practice. VR simulation is considered particularly valuable for developing professional skills, especially for students who require more time and experience to build confidence in their future roles. By integrating relevant elements from the work environment and enabling repeated practice, VR can contribute to more thorough preparation for the demands and situations students may encounter in clinical practice. A Canadian study supports this perspective by examining occupational therapy students' perceptions of VR as a pedagogical tool in their education (Erler et al., 2023). In the study, students were introduced to VR modules simulating realistic clinical scenarios. Through surveys and interviews, students expressed that VR was both engaging and conducive

to learning, particularly as a supplement to traditional teaching. They highlighted VR's ability to provide a safe and controlled environment for practicing clinical skills, which contributed to increased confidence and readiness to handle similar situations in real-life settings. Together, these studies indicate that VR holds potential as a valuable pedagogical resource in educational programmes. VR supports both the development and refinement of professional competencies in a virtual yet practice-oriented context.

For these reasons, the occupational therapy education at UCN has chosen to test and evaluate VR in selected teaching modules during the 2nd, 3rd, and 4th semesters. The expectation is that integrating VR into the curriculum enables students to experience specific situations, such as everyday life scenarios or insights into clients' diverse health conditions. This approach may help students gain practical experiences and insights, which they can integrate into their learning process. Additionally, VR can provide concrete examples of occupational therapy practice areas and patient groups, allowing students to relate this knowledge to their coursework, particularly when studying pathology and engaging with occupational therapy theories.

The rationale for integrating VR into the teaching is therefore to investigate whether it can provide students with vivid and practice-oriented examples of occupational therapy in action, including professional routines, tasks, and patient situations. As many students enter the programme without well-developed mental images of professional practice, it can be challenging for them to connect theoretical content with real-world contexts. Offering immersive experiences through VR aligns with the core principle of providing 'good examples' as described in Reflective Practice-Based Learning (Horn et al, 2020), which is applied in the occupational therapy curriculum. Specifically, the study aims to identify potential indicators that such experiences may help new students develop a more immediate and coherent understanding of occupational therapy practice in the early stages of their education, indicators that could be examined further in a subsequent, larger-scale study.

This article provides new, empirically grounded insights into how students experience VR as a means of engaging with vivid, practice-oriented examples that are directly connected to the instructional content and can enhance theoretical learning. It analyses students' assessments of VR to conventional approaches they have previously encountered for

acquiring practical knowledge and identifies the novel application areas for VR that they perceive as promising. Furthermore, the article examines educators' perspectives on VR technology, addressing both the practical challenges of implementing it in teaching and its potential to enrich students' learning experiences.

Scientific Relevance

The integration of VR into occupational therapy education is grounded in the pedagogical framework of Reflective Practice-Based Learning (RPL), which emphasises the use of 'good examples' to strengthen students' ability to connect theory with practice. To understand the pedagogical potential of VR within this framework, it is essential to explore the perspectives of both educators and students. The educator perspective is examined systematically through the lens of the Technological Pedagogical Content Knowledge (TPACK) model, which captures the interplay between technological, pedagogical, and professional knowledge required for meaningful integration of digital tools in teaching. By combining the TPACK framework with RPL principles, the study aims to generate insights into how VR can be integrated in ways that enhance both learning processes and professional understanding. The overarching research question guiding the study is:

How can Virtual Reality be meaningfully integrated into occupational therapy education to support learning in line with the principles of Reflective Practice-Based Learning?

And to address this, three research questions have been formulated.

Question 1: How do educators experience the interplay between technological, pedagogical, and professional knowledge (TPACK) concerning integration of VR into occupational therapy education?

Question 2: How do occupational therapy students experience the integration of VR in their education?

Question 3: What new applications for VR in teaching do occupational therapy students perceive after testing VR?

In this study, VR technology refers to VR headsets accompanied by a film database that enables the viewing of 360-degree videos. The database is managed by the educator via a tablet, allowing all students wearing the VR headsets to watch the same video simultaneously. Interaction with the videos is not possible. The technology used is a specific Danish-developed product called Take a Walk (TakeaWalk, 2025).

Theoretical Perspectives and Methodology

Experience, Thinking, and Action as the Basis for Learning

This project is grounded in a reflective practice learning approach, as outlined in the White Paper on Reflective Practice-based Learning (RPL) (Horn et al, 2020), which conceptualizes learning as a dynamic process involving experience, thinking, and action. Central to this understanding is the idea that learning, whether it occurs individually or in collaboration with others, emerges through reciprocal encounters between concrete practical experiences and abstract principles, concepts, or theoretical frameworks. Within this perspective, the relationship between theory and practice is understood as dialectical: action and reflection, theory and practice, and the individual and their environment are seen as interdependent and inseparable. Learning is thus viewed not as a linear transmission of knowledge but as a continuous, situated process in which meaning is created through the interplay between doing and thinking. Building on this pedagogical foundation, the project explores the potential of VR films to support students' professional development in occupational therapy education. Specifically, it investigates whether VR technology can provide immersive experiences of clinical practice, particularly in situations students have not yet encountered due to limited or no placement experience. Through exposure to realistic VR-based scenarios, students are offered opportunities to engage with professional phenomena, develop early impressions, reflect on complex interactions, and prepare for future actions in clinical practice (Horn et al, 2020).

TPACK model as a framework

The Technological Pedagogical and Content Knowledge (TPACK) framework builds on Shulman's (1986) concept of Pedagogical Content Knowledge (PCK), which highlights the importance of integrating subject knowledge with pedagogical strategies to support effective teaching. Mishra and Koehler (2006) extended this model by incorporating technological knowledge, arguing that meaningful technology integration requires an understanding of how technology, pedagogy, and content interact in specific teaching contexts. TPACK is grounded in constructivist learning theory, which views learning as an active, contextual, and reflective process. The model also reflects a dialectical understanding of teaching, where theory and practice, action and reflection, and individual and environment are seen as interrelated and mutually shaping

(Koehler & Mishra, 2009). As such, TPACK offers a dynamic perspective on professional knowledge in teaching, particularly relevant in digital and practice-oriented education. To understand how educators perceive the integration of VR technology into teaching, this study draws on the TPACK framework (Technological, Pedagogical, and Content Knowledge) developed by Mishra and Koehler (2006). The model offers a nuanced lens through which to explore the interplay between technological tools, pedagogical approaches, and subject-specific knowledge. It is particularly relevant in educational contexts where new technologies, such as VR, are introduced as part of teaching strategies. For this reason, TPACK is applied to clarify how the use of VR technology is linked to pedagogical considerations and professional knowledge in occupational therapy education.

Methodology

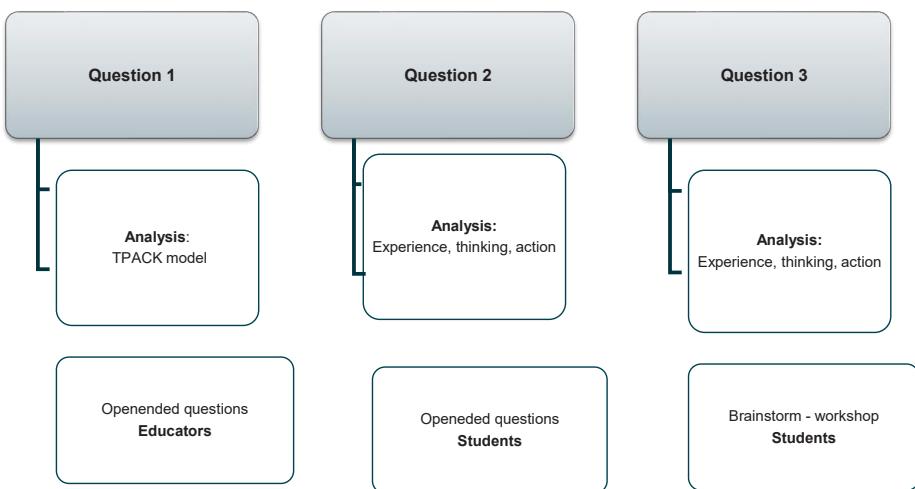
Two types of data were collected and used:

Evaluation Data in Teaching: Four VR-based teaching sessions and evaluations were conducted during the 2nd, 3rd, and 4th semesters. In collaboration with the educators responsible for these semesters, specific teaching themes were identified in which challenges had previously arisen in providing students with relevant and concrete examples. A suitable film was selected to serve as the basis for the subsequent teaching session. Following the VR experience, both students and educators were asked to complete a short questionnaire designed to capture their immediate experiences with the technology. The evaluation consisted of four open-ended questions aimed at eliciting the students' initial and spontaneous reflections. This approach aligns with qualitative methods that emphasize participants' firsthand perspectives and meaning-making, which are particularly valuable when exploring new or experiential forms of teaching (Kvale & Brinkmann, 2015). Five distinct films, each containing different professional content, have been tested. An overview of the films is provided in Table 1. Although the first session served as a pilot test, the evaluations from both students and educators have been incorporated into the present study, as no adjustments were made. The films have a duration between 1 minute and 8 minutes.

Workshop Data: A total of 36 occupational therapy students from all seven semesters of the program participated in a workshop where they experienced a selected film through VR headsets. All students watched

the same film, which depicted everyday life with dementia, including the thoughts and experiences of a person living with dementia, as well as the reactions and interactions of those around the person. Following the viewing, the students took part in a brainstorming session focused on potential applications of VR in teaching. Each student was asked to write down one idea per Post-it note and to contribute as many ideas as possible. The thematic categories emerged through an inductive process based on a qualitative reading of the students' written statements. This approach reflects principles of qualitative evaluation, where data is interpreted to uncover patterns of meaning (Kvale & Brinkmann, 2015).

Table 1: Descriptions of the five 360-degree films used


Heading of teaching session	Description of the film content
Film 1: 3 rd semester teaching, which addresses therapy in psychiatry practice.	Pilot test. A film depicting a meeting scenario in which a person with schizophrenia sees and hears individuals who do not exist in reality during a conversation with healthcare professionals. Through the immersive VR experience, students are placed in the patient's perspective, allowing them to feel what it is like to be in a situation where voices and visions appear vividly real. The aim is to highlight how difficult it can be to concentrate and engage in dialogue while experiencing intrusive and disturbing hallucinations.
Film 2: 4 th semester teaching, which addresses the use of assistive technologies and devices in occupational therapy practice.	This film was developed for use in community mental health services and aims to support individuals with social anxiety in training to take the bus. It includes various scenarios on the bus, such as boarding and sitting, while experiencing interactions, for example, with the bus driver or other passengers who speak to the viewer. The purpose of the film is to introduce students to technology (VR) used in clinical practice as a therapeutic and profession-specific tool.
Film 3: 2 nd semester teaching, which addresses activities of daily living (ADL) that may be experienced as intrusive and intimate.	This film depicts the concrete performance of bathing a patient lying in a hospital bed, where a healthcare professional carries out hygiene care of the patient's lower extremities. The patient is unclothed, and the film demonstrates how the procedure is conducted by hygienic principles. Through this film, students gain insight into what it means to be physically close to a patient who is dependent on assistance in intimate situations.

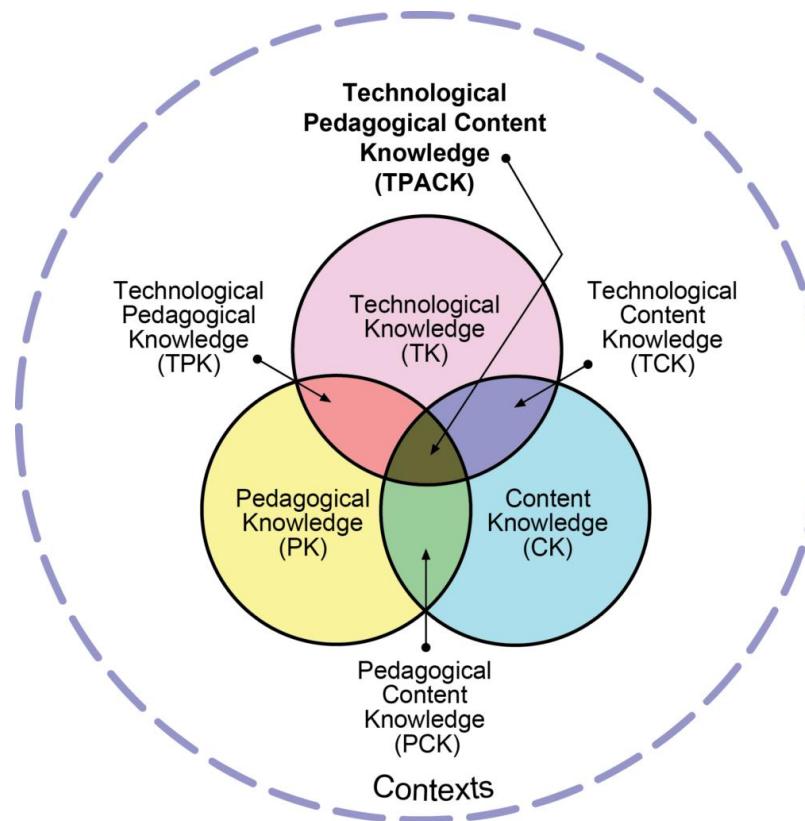
Heading of teaching session	Description of the film content
Film 4: 2 nd semester teaching, which addresses the planning and execution of patient interventions.	This film illustrates how a healthcare professional guides a hospitalized patient, admitted following a stroke or cerebral haemorrhage, through the process of washing their own face and upper body while seated in front of a mirror and sink. The film shows that the patient is experiencing both cognitive and physical impairments. It also highlights how the healthcare professional does not accommodate the patient's delayed responses.
Film 5: 3 rd semester teaching, which addresses cognitive challenges in daily life	This film portrays the experience of developing dementia from the perspective of the individual, as well as how it is perceived by close relatives such as a spouse and children. It illustrates the confusion and disconnection that can arise when the surrounding world attempts to communicate with a person affected by dementia.

Analysis

Two analyses were conducted to address the three specific research questions as well as the overall research question. The first analysis draws on the TPACK model to examine data based on educators' experiences testing VR films, aimed at providing students with a visual representation of 'the good example' in teaching during the early semesters of the occupational therapy education. The second analysis is guided by the three foundational analytical concepts of RPL: experience, thinking, and action (Horn et al, 2020, p.15), in the analysis of students' experiences with VR as an example of best practice, as well as their ideas for new potential applications of VR in occupational therapy education.

Figure 1: Visualisation of the analytical approach and type of data used to address the three research questions. (Figure conducted by authors)

TPACK model


To analyse the data collected from the educators (research question 1), the TPACK model was used as an analytical framework. This model is designed to understand and evaluate the integration of technology in education by combining three key domains of knowledge:

- Technological Knowledge (TK) – knowledge of digital technologies and their potential.
- Pedagogical Knowledge (PK) – knowledge of teaching methods and learning processes.
- Content Knowledge (CK) – knowledge of the specific subject matter being taught.

The TPACK model helps to systematize and categorize the educators' experiences, providing an overview of which areas of knowledge were particularly emphasized during the teaching process. The data were classified according to whether the reflections primarily related to technological aspects (TK), pedagogical opportunities (PK), subject-specific content (CK), or the intersections of these domains in teaching practice.

For the evaluation data, the TPACK model was applied to identify how VR technology supports teaching in specific subject areas and to assess the pedagogical opportunities and challenges associated with its implementation. By using the TPACK model as an analytical framework, it was possible to evaluate how VR technology is integrated into teaching, what learning potentials it offers, and which challenges must be addressed to ensure effective implementation.

Figure 2: The Technological Pedagogical Content Knowledge (TPACK) model (Reproduced by permission of the publisher, © 2012 by tpack.org)

Results

The two types of data have been analysed in two parts. Part one (research question 1) presents an analysis of evaluation questionnaire of how educators who have tested VR in their teaching experience the interplay between technological, pedagogical, and professional knowledge (TPACK) concerning the integration of VR into occupational therapy education. Part two (research questions 2 & 3) focuses on students' evaluations of VR when used as 'The Good Example' of a practice situation within a teaching activity. This analysis is guided by three theoretical concepts: experience, thinking, and action. The concepts of experience and thinking are used to analyse data from the students' evaluations conducted after VR was tested in teaching, while action is informed by the ideas generated during the student workshop. All quotes from the evaluations and suggested ideas have been translated from Danish to English.

Part one: An analysis of educator data using the TPACK model

Technological Knowledge:

Using VR in teaching is new for all the educators participating in this study. They describe how they need to know the basics of how to operate the VR headset: turning it on/off, adjusting volume and straps, charging it, downloading films, understanding the need for internet, and managing the number of headsets used simultaneously. The educators find it important to be able to instruct the students thoroughly in how the VR headsets work, how long the film lasts, and how the startup screen appears. Students can sometimes hear each other's audio, which may be delayed and disruptive, so placements with as much distance as possible are preferable. Students using the headsets may face challenges, including dizziness, which should be managed by taking off the headset and switching to the educator's tablet, though with a slightly reduced learning experience.

Besides, the educators describe how it is important to have access to films relevant to the content of the teaching.

Content Knowledge:

The educators describe it as very important to be able to use films relevant to the theme of the teaching, making it relevant for the learning goals. The content must then be tailored to the specific theme of learning to support the students in experiencing and understanding how an

occupational therapist works. Besides, the students can be supported in learning to understand the situations of the citizens and their experiences of having a specific diagnosis. The educators' experiences are that through VR, the students can get a realistic impression of a situation without being physically present, thus avoiding the need to engage with the surroundings.

Pedagogical Knowledge:

The pedagogical framework used within this study and this organization (UCN) is RPL, including its models and learning principles. The educators express that VR complements with a new opportunity to modify their pedagogical methods. Additionally, the students are experienced as having an increased engagement when working further with the subject after seeing the VR film.

Technological Pedagogical Content Knowledge:

The educators state the importance of including relevant films at this point in the teaching process and to ensure they align with the purpose of the teaching theme. Technology, content, and pedagogy must be consistent and coherent.

Furthermore, it is essential to present to the students what the film will be used for, what they are expected to learn from it, and what the focus should be during the film.

The educators experience that the same film can be utilized for various lessons and content themes. For example, a film about bed bathing can provide an experience of both being in a room with an elderly person who is naked, instruct on how such a situation should be handled, or focus on the communication between the professional and the citizen.

Context:

In the TPACK model, the analytical components are situated within a broader contextual framework, emphasizing that the successful integration of technology in teaching is also shaped by contextual factors. These factors identified by educators during VR testing indicate several practical considerations for an effective implementation of VR in teaching. First, the selected films must be downloaded in advance onto the VR headsets, as streaming is not otherwise feasible when multiple students need to view the same film simultaneously. Second, all VR head-

sets must be fully charged before the teaching session. Third, a stable and high-quality internet connection at the teaching location is crucial. Currently, only one classroom set of 38 VR headsets is available, which makes it necessary for educators to reserve the equipment in advance. To support this process, an accessible and user-friendly booking system is required. These considerations highlight the importance of technological infrastructure and logistical planning as key contextual factors in educational technology integration (Mishra & Koehler, 2006).

Part two: An analysis of students' evaluations and new ideas when VR is used as 'A Good Example'

Figure 3: Results of students' evaluations and new ideas when VR is used in teaching

Experience	Thinking	Action
<ul style="list-style-type: none"> • The realistic setting supports the learning • A safe and secure experience • An opportunity to observe the surroundings • Compared to having a visit from a citizen or having "hands-on" 	<ul style="list-style-type: none"> • Connection to theory and clinical practice • Supports understanding and remembering diagnoses and patient groups • The ability to reflect on one's experiences 	<ul style="list-style-type: none"> • Visualizations from an occupational therapist's perspective • Visualizations from a client perspective • Occupational therapy theory and assessments • Additional ideas/perspectives

With the learning principle of 'The Good Example', the VR film provides the students with a relevant example of a realistic situation relevant to the teaching theme, and to be discussed afterwards. The students' evaluations and new ideas are connected to experience, thinking and action in the following.

Experience

The students gain valuable experiences from watching a film of a realistic and relevant scenario through VR. The experience created a feeling of presence, enabling students to imagine themselves in the scenario safely and securely. Furthermore, to observe and reflect on how healthcare

professionals handle situations and interact with patients. Four themes appeared concerning experience:

The realistic setting supports the learning

“It was possible to see how other healthcare professionals handle a situation, what they do, what they say, how the citizen reacts, etc. It provides good learning to see it happen and reflect on the experience, rather than having to read about it.”

“To have a real experience with it, where you can imagine that you are right next to it. Here you might get ideas about what you could do to help. Because you feel like you are in it yourself.”

A safe and secure experience

“A safe way to push some boundaries, as you can always just take off the VR glasses.”

“It provided a realistic experience. Gave a feeling of being present, and yet not.”

An opportunity to observe the surroundings

“As you can look around in the surroundings, it also gives a more realistic feeling, similar to observing in clinical practice.”

Compared to having a visit from a citizen or having “hands-on”

“Learning with VR provides insight into how a disease or condition can affect someone, similar to when we have a citizen come to the school to talk about their disease or condition.”

A few students noted that they experienced dizziness while wearing the VR headsets and were therefore unable to watch the videos through them. As a result, they had to view the videos on the tablet.

Thinking

Visual and firsthand experiences improved memory retention and comprehension, fostering empathy and a deeper understanding of patient experiences. Watching realistic films supported the students in understanding different patient groups and thereby preparing them for re-

al-world situations. Besides, to think critically about their potential actions and interventions. Three themes appeared concerning thinking:

Connection to theory and clinical practice

“It can mean that you get real images to accompany the theory we learn. Gain an understanding of how to approach things in practice and understand different patient groups. It is good preparation before going out into the real world.”

“Well, it gives me a better insight into what it means to be affected by a disease, condition, or other issues that are relevant to us as occupational therapists. Also, what one might work with when they are fully qualified.”

Supports understanding and remembering diagnoses and patient groups

“It can provide a more visual learning experience that is better remembered because you experience it firsthand.”

“It means that I can understand what people with schizophrenia are talking about when they describe their experiences.”

“You might better be able to put yourself in the patient’s place and understand the challenges they may experience.”

The ability to reflect on one’s experiences

“I found it exciting to experience it firsthand. It has led to some reflections on how we can use VR in practice.”

Action

The ideas created at the workshop demonstrate the possibilities of different perspectives in actions connected to VR in teaching. The collected post-it notes from the workshop were analysed and categorized into four overarching themes: 1) Visualizations from an occupational therapist’s perspective. 2) Visualizations from a client perspective. 3) Visualizations that demonstrate how occupational therapy theories and assessments can be applied in practice. 4) Additional ideas and perspectives.

1) Visualizations from an occupational therapist's perspective:

- Instead of written cases, a person in a VR film may be more realistic for following group work e.g., connecting the person in the film to a relevant theory.
- Concerning work environment as a topic – make visits to different workplaces.
- An occupational therapist working with different kinds of clients.
- Insight into handling 'boundary-crossing' tasks such as bathing.
- Insight into different kinds of homes, e.g., social psychiatry or hospital.

2) Visualizations from a client perspective:

- Insights into experiences of everyday life when living with different kinds of diagnoses and functional impairment, such as delusions, hallucinations, obsessive thoughts, memory, sensory intolerance, aphasia, and apraxia.
- Become better at understanding relatives.
- Walking alone in the street, and everybody looks at you.

Occupational therapy theory and assessments:

- Practice the use of occupational therapy assessments.
- Make observations of clients performing daily activities in their environment.
- For practicing activity analysis.

Additional ideas/perspectives:

- Pathology and the connection to clinical practice.
- Support learning first aid.
- Occupational therapy laboratory working with communication.

Overall, the VR experiences support RPL by providing realistic insights into practice, making learning easier and more engaging compared to traditional classroom teaching. It offers a safe and secure environment where students can observe and interact with their surroundings, akin to a hands-on experience or having a visit from a citizen. The VR experience enhances thinking by helping students empathize with citizens, prepare for clinical placement, understand and remember diagnoses,

and connect theory to practice. It also encourages reflection and deeper engagement with the material. The actions taken during and after the VR experience involve discussing insights with peers and using the VR scenarios across different patient groups. These activities reinforce the learning process, making it more comprehensive and effective.

Conclusion

This study set out to explore the overarching question: How can Virtual Reality be meaningfully integrated into occupational therapy education to support learning in line with the principles of Reflective Practice-Based Learning? To address this, three sub-questions were formulated, examining: (1) how educators experience the interplay between technological, pedagogical, and professional knowledge (TPACK) in integrating VR into teaching; (2) how occupational therapy students experience the integration of VR in their education; and (3) what new applications for VR students envision after testing it. The findings highlight the multifaceted potential of VR in occupational therapy education. Educators perceived the integration of technological, pedagogical, and professional knowledge as a dynamic and evolving process that demands not only technical competence but also alignment with pedagogical aims and professional content. Students found the VR experience engaging and meaningful, offering an alternative way to connect theory and practice. The immersive and realistic nature of the VR scenarios functioned as 'The Good Example,' providing a shared reference point that stimulated reflection and informed classroom discussions. Furthermore, students identified potential new applications for VR in occupational therapy education, particularly in patient communication, assessment training, and environmental awareness.

However, the findings also indicate important considerations for future implementation. Some students experienced discomfort when wearing the VR headset, underscoring the need for alternative formats that provide comparable practice-based experiences. Moreover, the study does not address how students' perceptions of VR might evolve, particularly once the novelty effect diminishes. Taken together, these findings suggest that VR holds significant promise as a pedagogical tool within occupational therapy education, while also underscoring the need for further research to examine its impact over time. As this represents an initial

exploration, future studies on a larger scale are needed to determine how VR can be most effectively and inclusively integrated into teaching practice.

Future perspective

One promising avenue involves testing a new feature currently under development: an AI-driven avatar that can be integrated into the VR environment. This avatar would enable students to engage in simulated patient interactions, where both educators and students can prompt the avatar to embody a specific patient profile with concrete challenges. Such a feature could enhance students' clinical reasoning, communication skills, and ability to tailor interventions to individual needs. Investigating how this interactive element can support learning outcomes and enhance the realism of training scenarios could serve as a foundation for future pilot studies and research projects. These initiatives would align with and contribute to the development of a new thematic focus in the revised curriculum for occupational therapy education programmes in Denmark (UCN, 2024).

References

Erler, K. S., Bialocerkowski, A., & Carter, M. (2023). Appraising occupational therapy students' perceptions of virtual reality as a pedagogical innovation. *Journal of Occupational Therapy Education*, 8(1).

Horn, L. H., Jensen, C. G., Kjærgaard, T., Lukassen, N. B., Sørensen, I. M., Valbak-Andersen, C., & Bundgaard, S. B. (2020). *White paper on reflective practice-based learning*. University College of Northern Denmark.

Høye, S., & Severinsen, G. (2024). Studenters erfaringer med VR-simulering i helse- og sosialfagutdanningene. *Uniped*, 47(1).

Koehler, M. J., & Mishra, P. (2009). What is technological pedagogical content knowledge (TPACK)? *Contemporary Issues in Technology and Teacher Education*, 9(1), 60–70.

Kvale, S., & Brinkmann, S. (2015). *InterViews: Learning the Craft of Qualitative Research Interviewing* (3rd ed.). Sage Publications.

Liu, K., Zhang, W., Li, W., Liu, H., Wang, L., & Wang, J. (2023). Effectiveness of virtual reality in nursing education: A systematic review and meta-analysis. *BMC Medical Education*, 23, 710. <https://doi.org/10.1186/s12909-023-04662-x>

Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. *Teachers College Record*, 108(6), 1017–1054.

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. *Educational Researcher*, 15(2), 4–14.

Take a Walk. (n.d.). *Take a Walk – VR experiences for education and healthcare*. <https://www.takeawalk360.com/>

University College of Northern Denmark (UCN). (2024). *Curriculum for the Occupational Therapy Program*, February 2024 [Studieordning, Professionsbachelor i ergoterapi, februar 2024].