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Abstract

Many second-year engineering students enter advanced mathematics courses with gaps in foundational
knowledge, leading to high failure rates and limited progression in engineering studies. Artificial intelligence
(Al)-driven tutoring has emerged as a potential intervention to address these gaps by providing structured
support and real-time feedback. This study investigates the effectiveness of Al-supported tutoring in a one-
week intensive refresher course, with a focus on how cognitive learning styles influence engagement.

Using Neethling Brain Instrument (NBI) cognitive profiling, Google Form surveys, and interaction data from
the Mindjoy tutorbot, the analysis revealed that students with structured, analytical preferences (L1)
engaged most frequently with the Al tutor, while creative (R1) and relational (R2) students engaged less.
Students who made frequent use of the Al tutor reported increased confidence in problem-solving. These
findings highlight the need for Al tutoring systems to adapt to diverse cognitive profiles to maximise
engagement and learning outcomes.

Keywords: Al tutoring, engineering education, mathematics refresher course, cognitive profiles, student
engagement

1 Introduction

Artificial intelligence (Al) tools are increasingly used in education to personalise learning, provide real-time
feedback, and support complex problem-solving (Green & Carter, 2022). While Al has been applied
successfully in adaptive learning platforms, automated grading, and intelligent tutoring systemes, its role in
short, intensive refresher courses remains underexplored.

Mathematics proficiency is essential for engineering students, yet many enter second-year courses with
foundational gaps that hinder their ability to master advanced concepts (Bringula et al., 2021). At North-West
University (NWU), high failure rates in early-year mathematics modules have prompted the introduction of
a one-week pre-semester refresher course aimed at strengthening conceptual understanding before formal
classes begin.

This study examines whether Al-supported tutoring can enhance engagement and learning outcomes in this
setting. The Mindjoy large language model (LLM) tutorbot was integrated into the course to provide content
review, guided problem-solving, and clarification of key concepts (Mindjoy, 2025). Unlike traditional
instruction, the Al tutor offered instant, personalised feedback and self-paced learning opportunities.

The research addressed three questions:

1. How does student engagement with Al tutors vary across cognitive learning styles?

2. How effective is Al in addressing common misconceptions in mathematics?

3. To what extent does Al adapt to the learning needs of students with different cognitive profiles, as
measured by the Neethling Brain Instrument (NBI)?

In alignment with the Southern African Society for Engineering Education’s focus on student success, this
study aims to inform the effective integration of Al with human-led instruction. The intensive five-day format
compresses the learning cycle, potentially amplifying both the benefits and limitations of Al support, and
may produce engagement and learning patterns that differ from those in longer interventions.

2 Methodology

2.1 Course Structure and Daily Schedule

This study was conducted at North-West University (NWU), South Africa, as part of a one-week intensive
refresher course designed to reinforce key second-year engineering mathematics concepts before the



semester commenced. The programme targeted common learning gaps to strengthen students’ conceptual
foundations for advanced coursework.

Forty-nine students from various undergraduate engineering programmes participated voluntarily, all
enrolled in core second-year mathematics modules and with prior exposure to the topics.

The five-day course covered four foundational modules: MTHS 211 (Advanced Calculus), MTHS 212 (Linear
Algebra), APPM 211 (Dynamics I), and APPM 212 (Differential Equations). Each day was dedicated to a single
module, with Friday reserved for review and integration across all topics.

Students had access to the Mindjoy Al tutorbot throughout the day for independent practice and review.
Each day included two instructor-led sessions (09:00-11:00 and 11:30-13:30) covering key concepts and
guided problem-solving. In the late afternoon (16:30-18:30), all students participated in a compulsory Al-
assisted session, during which they completed a short test on the day’s content using Mindjoy. This session
ensured consistent engagement with the platform while providing immediate, tailored feedback.

The week concluded with a Friday integration session focused on consolidating knowledge across modules,
revisiting challenging material, exploring links between topics, and reflecting on learning in relation to
students’ cognitive profiles. This structure supported both conceptual understanding and self-directed
learning through interactive Al support.

2.2 Data Collection Approach

A multi-source data collection strategy was used to analyse student engagement, learning behaviours, and
the effectiveness of Al-assisted tutoring. Data came from three primary sources:

(1) Al-based engagement metrics
Interaction data were logged automatically by the Mindjoy platform throughout the week. Metrics included:

e Number of interactions (complete query—response pairs).
e Common misconceptions flagged by the system.

Misconceptions were identified from Al error logs and manually reviewed by instructors for accuracy and
relevance. The tutor usage score was defined as the total number of discrete interactions per student during
the refresher week, regardless of the number of modules attended or the total time spent on the platform.

(2) Student self-reported data

Neethling Brain Instrument (NBI) profiles were collected voluntarily from all participants, classifying cognitive
preferences into four quadrants: L1 (analytical thinking), L2 (logical organisation), R1 (creative thinking), and
R2 (social/holistic thinking). The NBI is a cognitive preference profiling tool rather than a traditional learning
styles instrument; it identifies thinking preferences in four quadrants without making prescriptive claims
about fixed learning modalities. It was selected for this study because it provides a quantifiable measure of
thinking preferences that can be correlated with observed engagement patterns.

(3) Engagement constructs and perceptions
Google Form surveys captured:

o Engagement constructs:
o Emotional Engagement (EE): motivation and enthusiasm when using Al.
o Behavioural Engagement (BE): active participation in Al-assisted tasks.
o Cognitive Engagement (CE): ability to connect Al-assisted learning to broader mathematical
concepts.



o Perceptions of the Al platform: measured with the System Usability Scale (SUS) and a custom
Perceived Learning (PL) questionnaire, both administered at the end of the week. Full item lists for
these instruments are provided in Appendix A.

2.3 Data Analysis Approach
The data analysis aligned with the study’s three research objectives:

e Engagement: The number of discrete conversations (query—response pairs) recorded for each
participant during the refresher week was used as the measure of Al engagement.

e Misconceptions: The total number of misconceptions identified by the Mindjoy platform was
recorded for each module.

e Cognitive profiles: NBI results were used to classify participants into four cognitive quadrants (L1, L2,
R1, R2) and compared with tutor usage counts to explore patterns in Al interaction.

e Engagement constructs and perceptions: Survey responses were used to calculate Emotional
Engagement (EE), Behavioural Engagement (BE), and Cognitive Engagement (CE) scores. The same
survey included the System Usability Scale (SUS) and a custom Perceived Learning (PL) questionnaire,
which were summarised to evaluate usability and perceived learning benefits.

All analyses were descriptive and conducted in Microsoft Excel.

3 Results

Quantitative survey results are presented separately from qualitative findings. Quotations are drawn from
open-ended survey responses or informal verbal feedback. Numerical trends are based on survey ratings and
platform analytics.

3.1 Tutorbot Usage and Student Engagement Trends

A key objective of this study was to examine how frequently students engaged with the Al tutor and how
these usage patterns varied across the cohort.

3.1.1 Engagement Classification Criteria

Student engagement was categorised descriptively based on the total number of discrete Al tutor
interactions (query—response pairs) recorded for each participant during the refresher week. Three usage
categories were defined:

e High engagement: = 38 interactions
o Medium engagement: 19-37 interactions
e Low engagement: < 18 interactions

Descriptive statistics for each category are shown in Table 1. High-engagement students recorded between
44 and 83 interactions (median = 57.5), medium-engagement students between 20 and 36 (median = 28),
and low-engagement students between 0 and 18 (median = 4).

The boxplot in Figure 1 illustrates these distributions, showing that high-engagement students consistently
interacted more with the Al tutor, with a narrower spread at higher usage levels compared to the other
groups.
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Figure 1: Tutorbot Usage vs. Engagement Level

3.2 Interpretation of Engagement Patterns

Highly engaged students (= 38 interactions) frequently used the Al tutor for real-time problem-solving,
feedback, and clarification, which indicates that they derived clear value from the structured, on-demand
support it provided.

Medium-engagement students (19—37 interactions) tended to use the Al tutor selectively, often consulting
it for specific problems rather than as a consistent study aid.

Low-engagement students (< 18 interactions) showed minimal interaction with the Al tutor despite having
full access throughout the week. In open-ended survey responses, these students reported barriers such as
uncertainty about how to phrase questions, difficulty interpreting text-heavy responses, and a preference
for face-to-face clarification.

Although daily tests were scheduled during the evening sessions, usage data indicate that students engaged
with the Al tutor at various points during the day, including morning classes and independent study. Recorded
usage therefore reflects a combination of scheduled and self-directed engagement.

Overall, these patterns reveal that Al tutors are most effective when students are already motivated and
comfortable with text-based interaction. The variation in engagement levels highlights the potential benefit
of expanding Al functionality to include more visual, collaborative, and adaptive features to better support
different students’ needs.

3.3 Misconceptions Across Modules and Al Effectiveness

Misconceptions were identified from Al tutorbot error logs generated during student interactions and
manually reviewed by instructors to confirm accuracy and relevance to the course content. The highest
number of misconceptions occurred in APPM 211 (20 cases), followed by APPM 212 (18) and MTHS 212 (15).
MTHS 211 recorded 12 misconceptions, while 10 were general cross-module issues.

While Mindjoy analytics provided counts of misconceptions per module, these did not distinguish between
procedural and conceptual types. The following two broad patterns are drawn from instructor observations
and student comments, and are therefore qualitative rather than coded data categories.

Procedural misconceptions typically involved errors in applying known methods or executing calculation
steps. Examples included:

e Numerical integration (APPM 211): Students applied Simpson’s Rule without accounting for initial
conditions, or confused it with unrelated numerical methods.

e Normal vector calculation (MTHS 212): Several students attempted to compute a normal vector from
points without correctly using the vector product, or misread coefficients from a plane equation as
the normal vector.



e Bernoulli’s equation (APPM 212): Students omitted the substitution step needed to transform it into
a linear equation, resulting in incorrect solutions.

e Row reduction (MTHS 212): Some students performed the basic operations but did not follow the
logical sequence required for full reduction, leading to incorrect system solutions.

Conceptual misconceptions were linked to misunderstandings of underlying principles. Examples included:

e Rectilinear kinematics (APPM 211): Students struggled to relate position, velocity, and acceleration
in continuous motion, often misapplying integration when deriving displacement.

e Geometric relationships between lines and planes (MTHS 212): Confusion over conditions for
parallelism or skewness of lines/planes, and how vectors and planes interact geometrically.

e Exact differential equations (APPM 212): Misinterpreting the conditions for exactness, or confusing
integrating factors with exact equations.

e Span and linear transformations (MTHS 212): Students conflated the meaning of “span” with generic
combinations, or could not differentiate between definitions and applications of linear
transformations.

These insights show that although the Al tutor was often effective in helping students correct procedural
errors through step-by-step guidance, conceptual misunderstandings were more persistent, particularly
when the explanations relied heavily on text. Addressing these would require incorporating interactive visual
explanations, contextual hints, and follow-up questioning to encourage reflective thinking.

3.4 Cognitive Profiles and Tutorbot Engagement

This study examined how cognitive learning styles, as measured by the Neethling Brain Instrument (NBI),
influenced engagement with Al tutoring. Students’ dominant cognitive preferences were categorised into
four quadrants: L1 (Analytical Thinking), L2 (Sequential Thinking), R1 (Creative Thinking), and R2
(Holistic/Relational Thinking).

Tutorbot usage was quantified as the total number of discrete Al-student interactions (complete query—
response pairs) logged during the refresher week. Table 1 summarises the distribution of dominant NBI
profiles across high, medium, and low engagement categories.

Table 1: Distribution of dominant NBI profiles across engagement categories

Engagement Category L1 L2 R1 R2 Total
High (>38) 0 0 6
Medium (19-37) 6 0 3 12
Low (<18) 12 13 1 5 31
Total 22 18 1 8 49

Descriptive analysis showed that L1 (Analytical-Sequential) students recorded the highest median number of
Al tutor interactions, followed by L2 (Organised-Practical) students, although L2 engagement varied more
widely. R1 (Creative-Experimental) and R2 (Relational-Interpersonal) students tended to engage less
frequently, and no R1 students appeared in the high-engagement group.

Figure 3 illustrates these patterns, showing that L1 students were more prevalent in the high- and medium-
engagement categories, indicating that the Al tutorbot’s structured, step-by-step explanations aligned
closely with their preference for logical, sequential problem-solving. L2 students were present across all
engagement levels but were most frequent in the low-engagement group, suggesting that while some
adapted well to the Al format, others may have preferred more applied, hands-on approaches.



R1 students were absent from both high- and medium-engagement categories, with only a single low-
engagement participant, indicating that the text-heavy format was less suited to their preference for
exploratory, visually rich learning. R2 students appeared only in the medium- and low-engagement
categories, consistent with a preference for collaborative, discussion-based learning over solitary Al
interaction.

These findings highlight the need for Al tutors to integrate multimodal learning strategies (such as dynamic
visualisations for R1 students, collaborative features for R2 students, and applied, context-based scenarios
for L2 students) to ensure balanced engagement across diverse cognitive profiles.
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Figure 2: Engagement category vs. dominant NBI quadrant

3.5 Student Engagement Constructs and System Usability
Engagement constructs were measured using:

1. Survey-based self-reports (1-5 Likert-scale ratings capturing student perceptions of engagement),

2. Tutorbot usage analytics (total number of discrete student—Al interactions), and

3. Statistical summaries of survey ratings for Emotional Engagement (EE), Behavioural Engagement
(BE), Cognitive Engagement (CE), System Usability (SUS), and Perceived Learning (PL).

Not all 49 students completed the survey items for these constructs; therefore, the results below are based

only on respondents with complete data for each construct and a recorded NBI profile. Table 2 reports mean
values (+ standard deviation) for each construct by dominant cognitive profile.

Table 2: Mean Survey Ratings (Likert 1-5) for Engagement Constructs, System Usability, and Perceived
Learning by Cognitive Profile

Dominant NBI Eigaogtei?:jr:t IEBrfgaagveicr)T:Jeri!c Encgoaggnei:qvjnt System Perceived
Quadrant (EE) (BE) (CE) Usability (SUS) Learning (PL)
L1 345+1.11 3.22+1.15 3.92+0.85 4.17+0.84 3.89+0.76
L2 3.60+0.88 3.09+1.15 4.20+0.87 4,27 +0.92 4,10+0.76
R2 3.90+0.88 2.90+£0.99 260+1.17 4.25+0.64 4.00 £ 0.00

Note: Scores are based on 1-5 Likert ratings, reported as mean * standard deviation.
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Figure 3: Mean ratings across the five constructs.

For emotional engagement (EE), R2 students reported the highest mean ratings (3.90), with L2 close behind
(3.60), which implies that positive perceptions of the Al tutor were not limited to sequential thinkers.
However, open-ended responses from R2 students indicated that these positive feelings did not always
translate into sustained use, with some describing the Al as “impersonal” and preferring more collaborative
interaction.

Behavioural engagement (BE) scores were moderate across all groups, with L1 slightly higher on average
(3.22). This aligns with usage analytics showing that L1 students tended to complete more Al-assisted
problem-solving sequences. R2 students recorded the lowest BE (2.90), often citing the “text-heavy
interface” as discouraging for extended sessions.

In cognitive engagement (CE), L2 students reported the highest values (4.20), reflecting strong confidence in
procedural problem-solving when using the Al tutor. L1 students followed closely (3.92), whereas R2 students
had notably lower scores (2.60), consistent with their qualitative feedback that the Al “lacked conceptual
depth” for complex reasoning tasks.

System usability (SUS) ratings were high for all profiles (4.17-4.27 range), indicating that students found the
Al tutor generally easy to navigate and integrate into their learning routines. High SUS scores were
moderately associated with higher usage, particularly among L1 and L2 students.

For perceived learning (PL), L2 students again led (4.10), followed by R2 (4.00) and L1 (3.89). Many L2
participants emphasised the value of step-by-step guidance for reinforcing key concepts, while R2 students
stressed the need for more adaptive, context-rich explanations to support deeper understanding.

Overall, the data indicate that while the Al tutor was rated as usable and beneficial across cognitive profiles,
its strengths were most evident for structured, sequential thinkers (L1 and L2). Creative and relational
students (R2) engaged positively on an emotional level but showed lower behavioural and cognitive
engagement, highlighting the importance of incorporating multimodal and collaborative features into Al-
supported learning environments.

4 Discussions

As expected, students with a strong preference for structured, sequential learning (L1 profiles) engaged most
readily with the Al tutorbot’s text-based, step-by-step feedback. The value of this study lies in quantifying
the strength of that alignment and contrasting it with the markedly different engagement patterns of other
cognitive profiles. By combining NBI profiling with detailed usage analytics and engagement constructs, we
were able to pinpoint not only who engaged more, but also why, highlighting the specific features of the Al
tutor that supported or limited each profile. These insights go beyond simply confirming known learning
preferences, offering clear, evidence-based directions for improvement, such as incorporating multimodal
elements to better support R1 and R2 students in engineering education contexts.



4.1 Tutorbot Effectiveness and Cognitive Profiles

This study examined the effectiveness of an Al-powered tutorbot in supporting engineering students’
mathematics learning across different cognitive profiles (NBI). As shown in the results, L1 students
(Structured Thinkers) recorded the highest engagement across all metrics, reflecting a strong alignment
between their preference for clear, rule-based learning and the tutorbot’s structured, step-by-step feedback.
In contrast, R1 (Creative) and R2 (Social) students engaged less consistently, with several noting in open-
ended responses that the Al felt “impersonal.” This perception, coupled with the text-heavy interaction style,
may account for their lower usage. Taken together, these findings point to the possibility that current Al tutor
designs may inherently privilege structured students, highlighting the need for adaptive, multimodal
interfaces that accommodate a wider range of cognitive styles.

4.2 Engagement Constructs in Context

Engagement with the Al tutor varied notably across cognitive profiles, underscoring the need to tailor digital
learning tools to diverse student preferences. L1 students consistently reported high emotional, behavioural,
and cognitive engagement, completing Al tasks more regularly and describing the system as both stimulating
and effective for step-by-step problem-solving. This alignment reflects their preference for structured, rule-
based environments and indicates that sequential students can thrive when Al-assisted contexts mirror their
cognitive tendencies.

In contrast, R2 (Social) students reported mixed or lower engagement across some constructs. Many
perceived the Al as impersonal or lacking emotional presence, leading to reduced behavioural engagement
and difficulty sustaining focus. Cognitively, they often struggled to apply Al-generated feedback to real-world
problems, particularly in the absence of collaborative or visual scaffolding.

The evidence shows that while structured Al systems effectively support L1 students, they risk marginalising
students who rely on social interaction, exploratory learning, or visual reasoning. Addressing this gap requires
moving beyond a one-size-fits-all approach toward adaptive, multimodal strategies that align more closely
with diverse cognitive styles.

4.3 Implications for Al Tutor Design

The engagement disparities across cognitive profiles point to the need for Al tutors that are both flexible and
adaptive. While structured students (L1) benefited from the linear, text-based format of the Mindjoy
tutorbot, this approach was less effective for students who favour conceptual, collaborative, or visually
driven learning. To engage a wider range of students, Al systems must evolve from static feedback toward
responsive, multimodal interaction.

For R1 students, who thrive on visual pattern recognition and creative problem-solving, features such as
interactive diagrams, animations, and graphing tools could enhance conceptual clarity. R2 students, who
value interpersonal and language-based learning, may respond better to conversational scaffolding,
discussion prompts, and simulated peer dialogue. In both cases, adaptive branching logic (adjusting tone,
strategy, or pacing based on user profile) could substantially improve engagement and learning outcomes.

Personalisation in Al learning should go beyond adjusting content level or delivery speed. Considering how
students think and interact with information can shift Al tutors from rigid information providers to
responsive, context-aware learning partners.

4.4 Al Usability and Learning Outcomes

The System Usability Scale (SUS) and Perceived Learning (PL) results offer valuable insights into how students
experienced the Al tutorbot. Most participants rated the system as intuitive and easy to navigate, with a



mean SUS score of 4.21. This aligns with prior research showing consistently high usability ratings for Al-
based learning tools, particularly when they provide structured, step-by-step interaction (Vlachogianni &
Tselios, 2021; Wang et al., 2024). Students also reported that the tutorbot enhanced their learning, especially
in consolidating procedures and supporting independent problem-solving.

However, these positive perceptions were not evenly distributed across cognitive styles. L1 students rated
both usability and learning impact highly, whereas R2 students struggled with dense, text-heavy explanations
and often disengaged due to limited interactivity or conceptual scaffolding. This indicates that strong usability
in technical terms does not necessarily translate into high cognitive or emotional engagement for all
students.

For broader adoption and greater impact, future Al systems should pair usability with adaptive learning
features (such as progressive onboarding, multimodal feedback, and differentiated interaction modes) to
better serve students who think and engage in different ways. High usability should be treated as a necessary
starting point, not the ultimate measure of an inclusive Al learning tool.

4.5 Limitations

While this study offers valuable insights into Al-assisted mathematics learning, several limitations must be
considered. First, the implementation was confined to the Mindjoy tutorbot within a structured refresher
and intervention setting, meaning the results may not generalise to other Al systems or contexts without
comparable scaffolding and instructor support.

Second, as noted in the Results section on Misconceptions Across Modules, the Al tutor displayed limited
conceptual flexibility. Although effective in guiding students through procedural steps, it often struggled to
address deeper conceptual misunderstandings or adapt explanations dynamically, particularly among
students with R1 and R2 learning profiles.

Third, as highlighted in the Student Engagement Constructs and System Usability results, the absence of
visual and interactive elements reduced engagement for some students, especially those with visual or
kinaesthetic preferences. The lack of diagrams, simulations, or collaborative tools underscores the
importance of multimodal support in future Al designs.

Fourth, certain students (particularly those less familiar with Al) experienced cognitive overload when
presented with long, text-heavy feedback. Progressive scaffolding, beginning with simplified explanations
and gradually increasing complexity, could mitigate this challenge.

Finally, the study’s modest sample size (n = 49) and homogeneous participant profile (engineering
undergraduates at a single institution) limit the generalisability of results. Future research should include a
more diverse student base across disciplines and institutions, and employ longitudinal designs to assess the
sustained impact of Al tutors on conceptual understanding and academic performance.

5 Conclusion

This study examined how engineering students with different cognitive profiles engaged with an Al tutorbot
during an intensive mathematics refresher course. By combining NBI profiling with survey-based engagement
constructs, usage analytics, and perceived learning measures, the analysis addressed three research
questions.



First, student engagement varied markedly across cognitive profiles: L1 students recorded the highest levels
of interaction, followed by L2 students, while R1 and R2 students engaged far less, no R1 students appeared
in the high-engagement category.

Second, Al support proved more effective in addressing procedural misconceptions than conceptual ones.
Step-by-step guidance often corrected calculation errors, but deeper conceptual misunderstandings
persisted, particularly when explanations relied solely on text.

Third, the Al tutor displayed limited adaptability to diverse cognitive needs. Its structured, text-based format
aligned well with sequential thinkers (L1), but creative (R1) and relational (R2) learners called for more visual,
interactive, and discussion-oriented features.

These findings quantify the alignment between Al affordances and student preferences while offering
targeted design directions (such as incorporating multimodal content, adaptive feedback, and collaborative
features) to extend benefits across a broader range of learners. Advancing beyond confirmation of known
learning tendencies, this work provides evidence-based recommendations for more inclusive, adaptive Al
tutor design in engineering mathematics education.
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APPENDIX A — EE, BE, CE, SUS and PL Structured Questions
Emotional Engagement (EE)
(1) Ifeel excited when solving math problems with the Al tool.

(2) I enjoy learning math concepts using Al-based tools.
(3) I feel emotionally involved when solving problems with the Al tool.
(4) The use of Al tools makes learning enjoyable for me.
(5) Ifeel curious about what we are learning when using the Tutorbot.

Behavioural Engagement (BE)
(1) Itry hard to engage actively with the Al tool during lessons.
(2) | complete all tasks provided through the Al tool.
(3) I participate fully in discussions or exercises involving Al-based tools.
(4) I actively explore how to use the Al tool to enhance my problem-solving.
(5) I'work hard when engaging with the Tutorbot.

Cognitive Engagement (CE)
(1) Itry to connect concepts | learn with the Al tool to my prior knowledge.

(2) Iuse the Al tool to help integrate various mathematical ideas.

(3) I reflect on how the Al tool supports my problem-solving skills.

(4) 1apply critical thinking when interacting with the Al tool.

(5) I evaluate the effectiveness of the Al tool in helping me understand complex concepts.

System Usability Scale (SUS)
(1) Ithink that | would like to use the Tutorbot frequently.

(2) I found the Tutorbot to be simple.

(3) I'thought the Tutorbot was easy to use.

(4) Ithink that | could use the Tutorbot without the support of a technical person.

(5) I found the various functions in the Tutorbot to be well integrated.

(6) Ithought there was a lot of consistency in the Tutorbot.

(7) I'would imagine that most people would learn to use the Tutorbot very quickly.
)

(8) I found the Tutorbot to be very intuitive.
(9) | felt very confident using the Tutorbot.
(10)1 could use the Tutorbot without having to learn anything new.

Perceived Learning (PL)

(1) The Tutorbot provided me with an integrated knowledge of the mathematical concepts covered in
the refresher course.

(2) The Tutorbot enhanced my ability to investigate, discuss, and critique mathematical problems more
effectively.

(3) The Tutorbot enhanced my ability to apply mathematical techniques to solve problems.

(4) The Tutorbot helped me to develop a deeper understanding of mathematical principles and their
applications.

(5) The Tutorbot improved my ability to analyse and solve complex mathematical problems.

(6) The Tutorbot developed my ability to apply problem-solving strategies in mathematics.

Open-Ended Questions

(1) How has the use of Al tools impacted your learning experience?

(2) What do you find most helpful about the Al tool?
(3) Are there any challenges you encountered while using the Al tool? Please elaborate.
(4) What suggestions do you have for improving the Al tool or its integration into learning?





