
1 | P a g e

Traditional to transformative: Empowering education with 
computational thinking 

Adri van Nieuwkerk 
Opti-Num Solutions, South Africa, adri.vannieuwkerk@optinum.co.za 

Prebantha Moodley 
University of the Witwatersrand, South Africa, prebantha.moodley@wits.ac.za 

mailto:adri.vannieuwkerk@optinum.co.za
mailto:prebantha.moodley@wits.ac.za


2 | P a g e  

Abstract 

In 2020, the COVID-19 pandemic upended global routines, compelling a re-evaluation of established systems 
and daily life. Educational institutions faced the challenge of transitioning traditional teaching and learning 
practices to online platforms. This paper presents the continued collaboration, catalysed by COVID-19 
lockdown, of industry partners, Opti-Num Solutions, MathWorks and the University of the Witwatersrand 
(School of Chemical and Metallurgical Engineering), on the second-year computing for process engineering 
course. The course lends itself favourably to online learning and assessments and is the ideal case study to 
explore the delivery of computational thinking-based coursework. We present findings from 5 years of this 
collaboration with purposeful interventions to enhance student learning and feature computational thinking 
relevant to the current climate. This includes the implementation of self-paced online courses and integration 
of an automated assessment tool. Results from a student survey show that approximately 95% of students 
had little to no experience in programming due to the absence of related courses in high school, limited 
opportunities, lack of resources, and no prior need or requirement to learn programming. However, after 
completing the self-paced online course, most students felt competent and empowered in their 
programming skills showing that these and future interventions impact computational learning. 

Keywords: programming, COVID-19 interventions, digital tools, industry-academia collaboration 

1 Introduction 

1.1 Computational Thinking 

It is now essential to include computational thinking skills in STEM courses, due to the need of these skills in 
industry, as expressed by the World Economic Forum, “Future of Jobs Report” in 2023 (World Economic 
Forum, 2023). The authors recognise that, at the time of delivering interventions for the computing for 
process engineering course (CHMT2011) and when writing this paper, definitions for computational thinking 
are fluid and continue to evolve. For the purpose of this paper, the authors have identified two definitions 
that encapsulate the approach for including certain course interventions.  

First, computational thinking is “the conceptual foundation required to solve problems effectively and 
efficiently (i.e., algorithmically, with or without the assistance of computers) with solutions that are reusable 
in different contexts.” (Valerie J. Shute, 2017). In addition to this, computational thinking vocabulary should 
include the second definition “CT encompasses the thought processes of abstraction, decomposition, 
algorithmic design, evaluation, and generalization.” (Selby, 2013). In the case of CHMT2011, computational 
thinking is the fundamental stepping stone for students to achieve key learning outcomes.  

1.2 Computing for process engineering: Course Overview 

The computing for process engineering course (CHMT2011) is an introductory programming course taught 
at second year within the school of chemical and metallurgical engineering (CHMT) at the University of the 
Witwatersrand (Wits). The course aims to equip students with proficiency in computer programming to solve 
engineering problems, with the intention to develop a sense of importance for computers and programming 
in addressing realistic process engineering challenges (School of Chemical and Metallurgical Engineering, 
2024). The course incorporates a computational thinking approach to teaching programming principles, i.e. 
enabling students to understand programming as a language for problem solving. 

Key learning outcomes of the course: understand core programming principles, execute programs, 
understand data types, control flow, logic, functions, visualize data and create scripts. These were achieved 
through various learning tools, such as lectures, tutorials, assignments, tests and exams. MATLAB was the 
programming language of choice for this course. This decision was made based on (a) the availability of 
MATLAB via the Campus-Wide License (The MathWorks, Inc, 2025) (b) the ease of use of the integrated 
development environment and (c) the digital teaching resources and training made available to Wits.  



3 | P a g e  

MathWorks is a leading developer of mathematical computing software which engineers and scientists use 
and rely on to accelerate the pace of discovery and innovation. The campus license is a teaching and research 
license offering from MathWorks, providing open access to software and training for all faculty staff, 
researchers and students. 

The course was previously taught in duplicate lessons to cover large groups of students (150 students average 
class size) where student submissions (often handwritten) were marked by the lecturer or tutors. This course 
was the first point of reference for computational thinking within the CHMT2011 curriculum; illustrating to 
students how to problem-solve using a programming language. It is important to note that computational 
thinking is still not considered a learning outcome or objective for this course, creating an incorrect 
perception of the value of the course. 

2 Addressing Urgency 

Wits, like many academic institutions around the world, was forced to re-evaluate the delivery of instruction 
while maintaining learning outcomes during the COVID-19 pandemic. In the case of CHMT2011, the course 
lent itself well to being taught online however an online transition proved a great challenge due to the 
immediacy of lockdown. There was little to no time for lecturers to mobilise online resources and foster an 
online mindset, thus ensuring motivation to learn for this course and meet learning outcomes became a 
driving a factor.  

Opti-Num, the sole authorised distributors of MATLAB in southern Africa, have strong ties in academia due 
to their support for universities, enhancing instructional learning and innovative research. Additionally, they 
understood that a new approach was needed in this time. Collaborating with them presented an opportunity: 

1. Intervention tools: Leveraging MathWorks resources and training to transition “classroom teaching” 

to self-paced learning in an online environment. This meant that learning about coding using the 

MATLAB interface was something students could learn independently. 

2. Evaluation methods: Integration of an automated grading tool, MATLAB Grader, within the Wits 

learning management system (LMS), meant that students coding assignments and submissions were 

assessed timeously and with immediate feedback (unlike the tedious marking of handwritten coding 

assignments which result in delayed feedback). 

3 Intervention Tools  

Several tools, from the university and the campus license, were leveraged to address the transition of course 
lessons and assessments to online teaching and learning. The intervention tools are presented in this section 
and the implementation discussed in Section 4. 

It is important to note that prior to 2020 none of the MATLAB related interventions presented here were 
used to deliver the course; tools that were used included MATLAB, MATLAB documentation and online videos 
and course notes developed and created by the previous lecturer. These notes are currently used. 

3.1 Course Notes and Programming Documentation 

CHMT2011 includes well-developed course notes with additional reference material, such as MathWorks 
Documentation (The MathWorks, Inc., 2025). Documentation pages are sources of help for learning about 
and working with MATLAB software. 

3.2 Self-Paced Online Training Courses 

The integration of MathWorks online courses (The MathWorks, Inc., 2025), with the Wits LMS, meant that 
an array of online courses were accessible to students. These courses covered programming topics such as, 



4 | P a g e  

core programming skills, data visualisation, artificial intelligence, modelling and simulation. Two courses from 
this suite were used:  

MATLAB Onramp: A 2-hour introductory course focused on the basics of programming, commonly used 
functions and workflows, i.e., navigating the interface, saving, creating files in different formats. 

Solving non-linear equations with MATLAB: A 3-hour course focused on the basics of solving non-linear 
equations within MATLAB. This includes root-finding methods to solve nonlinear equations thus preparing 
students for problems they will encounter in the engineering curriculum. 

3.3 Automated Assessments 

Automated marking of coding assessments ensures that students practice coding skills via a platform that 
provides instant feedback on their performance of the task. MathWorks offers an automated assessment 
tool, MATLAB Grader (The MathWorks, Inc., 2025) which was integrated into the Wits LMS, where students 
access assessments, submit their code, receive instant feedback on the correctness of their submissions, and 
are graded automatically. The coding assignments were provided by a MathWorks repository of existing 
ready-to-go problems and tests, known as Assessment Items (The MathWorks. Inc., 2025).  

3.4 Online Videos and playlists 

In previous years of instruction, Dr Ming included online videos, which he created, in the course notes. 
Following this, Dr Moodley created additional video playlists as supplementary material to classroom 
activities and tutorials. Students accessed videos via the course notes. Topic-specific videos were shared on 
a weekly basis. 

4 Implementation of Interventions 

4.1 Evaluation Methods 

Table 1 (Section 8,Appendix) maps out a high-level view of a 5-year period of implementation; summarising 
the intervention tools used per year as well as the learning outcomes. The choice of intervention depended 
on (a) method of teaching e.g. lockdowns in COVID meant that all teaching was done online, (b) the size of 
the class e.g. average class size of 150 students meant that each year required slightly different approaches. 
(c) changes within the faculty and CHMT. 

4.2 Evidence of Impact 

A survey was sent out in 2021, to students who completed the CHMT2011 course in 2020 and 2021. The 
survey aimed to (1) collect anecdotal feedback of student’s learning experience, (2) to determine the efficacy 
of interventions and (3) explored students’ knowledge of graduate employability skills required for industry.  

Since the survey in 2021, new cohorts of students have participated in the updated version of the course. 
Apart from University-Wide course evaluations, new student cohorts have not taken part in formal surveys 
for this particular course. The survey, distributed as a Microsoft Form, contained 14 questions, with an 
average completion time of 9 minutes. 22 students completed the survey and provided feedback. 

The class of 2020 was the first to complete the MATLAB Onramp, where 82% of the 2nd year cohort had little 
to no experience in programming due to the absence of programming courses in first year or at high school. 
When asked about the use of the MATLAB Onramp course, some students reported it as “Challenging” or 
“Difficult”, and 50% of students reported an “Exciting experience”:  



5 | P a g e  

“The Onramp course was so helpful, and it wasn’t pure video. The interactive part helped me 
understand what was being conveyed.” 

In 2021, when MATLAB Grader was integrated into the Wits LMS, students submitted coding assignments 
and received instant feedback on the correctness of their submissions. When asked about the experience of 
receiving instant feedback on coding assignments, students reported that they enjoyed the platform:  

“The instant grading was really good as it did not give me the anxiety of waiting for results”. 

When asked about their opinion on employability skills needed upon graduation, and the usefulness of 
learning programming skills for solving engineering problems; all surveyed students answered that 
programming skills were vital for seeking jobs. A portion of students also commented that, upon further 
research there were many more programming languages that they should learn and that they feel confident 
in doing so now that they have “covered the basics”:  

“I went for a job interview and was asked about my computer proficiency and the skills that I 
learnt, and this course was definitely a talking point and interested the interviewer. Thank 

you for the course as it truly equipped me with valuable skills and I've always procrastinating 
learning to code, but this course helped me start that journey!” 

Overall, the sentiment from students was that the ability to program was important for problem solving, 
specifically when it comes to thinking about and solving engineering problems:  

“It was quite interesting to use programming to solve engineering problems. And just 
developing the skill of programming, which I think is valuable in many different domains.” 

Upon completion of the CHMT course, students believed they were more competent in programming and 
felt empowered to expand their programming skills:  

“Provided a good foundational understanding of MATLAB programming and an exposure to 
several scenarios in which MATLAB programming could be used to solve an interesting 

problem. It was beneficial for the CHMT2011 work and understanding the fundamental of 
programming as a skill in general.” 

5 Discussion 

Navigating the transition from classroom to online teaching was a significant challenge during the COVID-19 
lockdown. Student and staff access to resources was severely restricted and collaborative effort with industry 
partners slowed. Specifically for course CHMT2011, internet access and use of a personal computer was not 
possible for many students. While the university provided such resources for many students, peer-learning 
and engagement with lecturers remained an essential aspect of the university experience. From the 
perspective of the student, transitioning from the physical classroom to digital instruction was difficult and 
challenged their entire “way of learning”.  

To complicate matters further, students were faced with learning programming. In the case of MATLAB, the 
logic used in problem solving is similar to that of spoken English and the syntax is relatively easy to learn. 
However, English is typically a Wits student’s second or third spoken language which meant they were faced 
with learning a new language as well as the ability to convert logic and problem solving into readable code. 
Having uncovered this, lecturers were encouraged to emphasize problem solving over the word “coding” so 
that students focus on the engineering problem and become syntax agnostic.  



6 | P a g e  

The intervention tools and their implementation presented in this paper focus on the resources available 
from MathWorks. It is possible to take a similar approach with any programming language within any 
engineering degree. In South Africa, other branches of engineering traditionally emphasise programming 
throughout a student’s four-year degree. Historically, for chemical engineers this has not been the case. This 
must change for students to be better equipped for a working world that is valuing computational thinking 
and associated skills (World Economic Forum, 2023). 

At this stage the student is aware of basic engineering principles, equations and formulae, and is able to solve 
specific problems without the use of code. By taking similar problems with similar engineering concepts, the 
student is able to use programming constructs to arrive at a solution that was previously iterated by hand. 
The challenge however is to efficiently combine and stagger concepts in engineering and programming, such 
that students can synthesis the information and engineering specific lecturers are not lecturing programming 
principles. This is still under consideration. 

Given the success of the automated assessments and self-paced course interventions, we believe it is 
necessary for students in this discipline to be exposed to programming outside of this second-year course. 
By including ‘programming for engineering problem solving’ in other courses, students can solve course 
specific problems and build better computational thinking skills. Discussions with lecturers are ongoing to 
present a more coherent curriculum that creates continuity for computational thinking. This would involve 
re-introducing fundamental engineering problems in CHMT2011 but asking the student to solve it using a 
programming language.  

6 Conclusion 

This work presents industry-academia collaborations over a 5-year period. Whilst the COVID pandemic 
catalysed this shift, engineering faculties can benefit from reassessing delivery of courses and aligning 
learning content to better suit the current industry climate. We have shown that by leveraging existing and 
new digital tools, it is possible to meet and expand on learning outcomes in university courses that are 
tailored toward developing computational thinking, such as the second-year computers course in this 
practice paper. Including a computational thinking approach meant that the focus moved from ‘learning to 
code’ to ‘problem solving using a programming language’, thus reframing student’s perspective of the course.  

The results of the student survey show that these interventions have positively impacted students learning, 
and beyond this has encouraged them to leading their learning despite many challenges. Self-paced online 
courses, integrated LMS-assessments and instant feedback enhance student learning and support the 
computational thinking paradigm. Additionally, by approaching each student cohort differently, we are able 
to improve each year from lessons learnt the previous year. These improvements include adjusting the way 
assessments are conducted and the way new and existing tools are used as shown in this practice paper, all 
while still meeting course outcomes and university quality protocols regarding engineering courses.  

To further support the work here, the authors are now involving other educators in the engineering 
curriculum to include a programming element in their course where students can solve specific engineering 
problems and enhance their computational thinking skills. This will create a steady thread for computational 
thinking that previously was broken across the years. An initiative of this scale however requires careful 
planning within the discipline curriculum and is currently still under consideration. 

 



7 | P a g e

7 References 

Etter, D. (1993). Engineering Problem Solving with MATLAB. New Jersey: Prentice-Hall. 

School of Chemical and Metallurgical Engineering, C. (2024). CHMT2011 Computing for Process Engineering 
Course Brief. 

Selby, C. a. (2013). Computational thinking: the developing definition . Southampton: University of 
Southampton. 

The MathWorks, Inc. (2025, March 27). Campus-Wide License. Retrieved from MathWorks: 
https://www.mathworks.com/academia/campus/resources/campus-wide-license-
products.html#resources 

The MathWorks, Inc. (2025, March 27). Documentation. Retrieved from MathWorks: 
https://www.mathworks.com/help/index.html?s_tid=CRUX_lftnav 

The MathWorks, Inc. (2025, March 27). MATLAB Grader. Retrieved from MathWorks: 
https://www.mathworks.com/products/matlab-grader.html 

The MathWorks, Inc. (2025, March 27). Online Courses. Retrieved from MATLAB Academy: 
https://matlabacademy.mathworks.com/?page=1&sort=featured 

The MathWorks. Inc. (2025, March 27). Assessment Content. Retrieved from MathWorks: 
https://www.mathworks.com/products/matlab-grader/assessment-content.html 

Valerie J. Shute, C. S.-C. (2017). Demystifying computational thinking. Educational Research Review, 142-158. 
doi:https://doi.org/10.1016/j.edurev.2017.09.003 

World Economic Forum. (2023). Future of Jobs Report 2023. Geneva: World Economic Forum. Retrieved from 
https://www.weforum.org/reports/the-future-ofjobs-report-2023/ 

8 Appendix 

Note: Table 1 in Landscape on next page (pg 8). 



8 | P a g e  

Table 1: Timeline  of the intervention tools 

 Year 1: 2020 Year 2: 2021 Year 3: 2022 (Note 5) Year 4: 2023 (Note 5) Year 5: 2024 

Course Notes Yes Yes Yes Yes Yes 

SELF-PACED ONLINE COURSES  

MATLAB Onramp 
 

Learning Outcomes 1-3 

Used as an assignment  
(toward course mark) 

Used as an assignment  
(toward course mark) 

Used as an assignment  
(toward course mark) 

Used as an assignment  
(toward course mark) 

Used as a pre-requisite 
(does not count toward 
course mark) (Note 1) 

Solving non-linear 
equations with 

MATLAB (Note 6)  
 

Learning Outcomes 1,2 

Assignment Assignment Assignment Assignment Assignment 

AUTOMATED ASSESSMENTS 

MATLAB Grader 
 

Learning Outcomes 1-4 
No Assignment Assignment Assignment 

Tutorials, tests and 
exams 

MATLAB Grader 
Assessments 

 
Learning Outcomes 1-4 

No No Exams Exams 
Tutorials, tests and 
exams. 

Online videos and 
playlists (Note 2) 

 
Learning Outcomes 1-4 

Yes Yes Yes Yes Yes 

COURSE MARK DISTRIBUTION (Note 3) 

MATLAB Tutorials 
(Note 4) 

 
Learning Outcomes 1-4 

0 0 0 0 15 (10) 

Assignments (%) 25 (2) 25 (2) 25 25 15 (1) 
Tests (%) 25 (2) 25 (2) 25 25 30 (1) 
Exam (%) 50 (1) 50 (1) 50 (1) 50 (1) 40 (1) 

Continue to next page 



9 | P a g e

Key learning outcomes: 
(as per the course brief) 

1. Understand the core principles underlying any programming language and understand how to execute a
computer program.

2. Understand the basics of primitive data types, program control flow, program logic, and functions.
3. Plotting data and visualization using MATLAB.
4. Be able to apply these concepts and create MATLAB scripts that solve engineering problems.

Notes: 
1. In 2023, the faculty introduced “Introduction to Programming with MATLAB”, a 6-week course for the

first-year engineering students. This meant that students would have covered key learning outcomes
before they entered CHMT2011. MATLAB onramp was encouraged to refresh skills, no marks were
awarded.

2. These consisted of online videos and playlists, one of which was created by Dr Ming.
3. Total course marks add up to 100%. The number in parenthesis is the number of assessments within that

category. The percentage shown is the total for that category.
4. MATLAB tutorials refer to a collection of engineering problems from MATLAB Grader. Students were

given a defined number of attempts to solve the problem and submit within a given timeline. As the
difficulty of the problems increased these parameters were adjusted. Consideration was given to special
class circumstances.

5. In 2022 and 2023, the course was delivered by a part-time sessional lecturer. The data supplied is to the
best of our knowledge.

6. The assignment consists of three parts, based on an engineering problem the student would have
encountered in their first year. This includes mass balances with a reactor, separators and mixer
components. Part 1 introduces the student to solving non-linear equations, part 2 asks the student to
solve the problem using a flow chart and the 5-step engineering methodology (Etter, 1993). Part 3 is
submitting code that solves for the mass balance and stream data across the process flow.


