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Abstract

Purpose: The article analyzes the effects of Artificial Intelligence (AI) on Business Model Innovation (BMI), focusing 
on the platform business model. 

Design/Methodology/Approach: Proposes a CLD (Causal Loop Diagram) model and analyzes the model to discuss 
insights about the structure and performance of the business model.

Findings: Shows that AI enables key strategic feedback loops that constitute the core structure of the business 
model.

Practical Implications: Managers and entrepreneurs who seek to leverage AI should invest in the AI feedback loops. 
An AI strategy for BMI should seek to create, strengthen, and speed-up AI feedback loops in the business model.

Originality/Value: Analyzes the effects of AI on BMI while accounting for dynamic complexity as a business 
model property to be understood and leveraged. Contributes to our understanding of the business value and 
impact of AI.
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Introduction
AI is expected to have a transformative impact on the 
economy and society (Brynjolfsson and McAfee, 2016). 
However, companies are struggling to make sense of 
the business impact of AI and create a coherent AI 
strategy. This article brings together the concepts of AI 
and Business Model Innovation, analyzing the effects 
of AI on Business Model Innovation. BMI can be seen 
as a process and an outcome, the innovative business 
model (Foss and Saebi, 2017). To make the analysis 
specific and useful, the article focuses on the plat-
form business model (Economides and Katsamakas, 
2006; Parker and Van Alstyne, 2005), the most inno-
vative business model archetype in the digital econ-
omy (Abdelkafi et al., 2019; Parker, Van Alstyne, and 
Choudary, 2016). 

An extensive literature on business models spans 
across fields such as management, strategy, innova-
tion, and information systems. In early work, (Oster-
walder, Pigneur and Tucci, 2005) called for a clarification 
of the business model concept. In simple terms, a busi-
ness model is “a blueprint of how a company does 
business,” and it defines ”the logic of the firm”: how a 
company creates and delivers value to customers and 
how it captures value. 

Business model innovation (BMI) is crucial to business 
viability (Demil and Lecocq, 2010). Several authors pro-
pose normative frameworks for practitioners, such as 
the business model canvas (Osterwalder and Pigneur, 
2010), a template of nine building blocks: customer 
segments, value propositions, channels, customer rela-
tionships, revenue streams, key resources, key activi-
ties, key partnerships, cost structure. 

Zott, Amit, and Massa (2011) note the business model 
concept is emerging as a new unit of analysis, empha-
sizing a holistic approach to how a firm does busi-
ness. Moreover, firm activities play an essential role 
in a business model, “a system of interconnected and 
interdependent activities that determines the way the 
company does business with its customers, partners 
and vendors.” 

In most recent reviews, (Massa, Tucci and Afuah, 
2017) suggest three interpretations of business 
model (attributes of firms; cognitive schemas; formal 

representation of how a business functions) and dis-
cuss the relationship with the rest of strategy literature. 
(Foss and Saebi, 2017) identify issues of construct clar-
ity and research gaps and recommend future research 
related to complexity and entrepreneurship. (Täuscher 
and Abdelkafi, 2017) review the value of visual tools in 
BMI. (Wirtz and Daiser, 2017) explore an integrative BMI 
framework in which technology and firm dynamics are 
important dimensions. It also discusses BMI at Google 
as an illustrative example.

The closest article to our approach is (Casadesus-Ma-
sanell and Ricart, 2010), which clarifies the difference 
between strategy and business model, and proposes 
that Causal Loop Diagrams (CLDs) are a useful repre-
sentation of business models illustrating an old-econ-
omy airline example.

This article contributes to a rigorous understanding of 
business model dynamics in the digital economy. It pro-
vides a framework to understand AI effects on business 
models, adding to the literature related to the dynamic 
impact of technology on business (Georgantzas and 
Katsamakas, 2008). The critical motivating question 
is: How can we analyze the effects of AI on BMI while 
accounting for dynamic complexity as a feature of busi-
ness that needs to be understood and leveraged?

Approach and Model
We build a framework to explore business models 
using Causal Loop Diagrams (CLDs). A positive link 
between two variables in a CLD means that an increase 
of the first variable leads to an increase of the second 
variable. 

The research focuses on key feedback loops that drive 
business model performance and sheds light on the 
dynamic complexity of digital business models. We 
focus on the platform business model, which is the 
most important new form of business model enabled 
by the Internet and digital technologies (Bakos and 
Katsamakas, 2008; Sorri et al., 2019). 

The availability of more content, apps, and services 
on a digital platform attract more users, which in turn 
attract even more content, apps and services (Eisen-
mann, Parker and Van Alstyne, 2006; Hagiu, 2014; 
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Katsamakas and Madany, 2019). This mechanism of 
two cross-side network effects constitutes a reinforc-
ing feedback loop, depicted at the top left corner of our 
model (R0 feedback loop in Figure 1). Our model (Figure 
1) illustrates the structure of one type of digital plat-
form, an advertising-based content and services plat-
form (e.g., Google). The platform provides users with 
access to digital content and services and makes rev-
enue from advertisers.

We describe some of the critical feedback loops that 
constitute the core structure of the business model. 
Users bring more users to the platform through Digital 
WoM (Word of Mouth) (R1 reinforcing feedback loop). 
This feedback loop is an important mechanism for plat-
form adoption and growth.

More Users mean that the platform collects more Data 
from users, which drives higher Quality of Search Algo-
rithm, which provides more relevant organic search 
results, hence attracts more users (R2 reinforcing feed-
back loop). 

Advertisers are attracted by platform Users. More 
Advertisers and more Data from advertisers help 
improve the Quality of Ad Matching Algorithm. This has 
two effects: it directly attracts more Advertisers (R3 
reinforcing feedback loop), and it improves the Qual-
ity of Ads, which helps attract more Users, thus more 
Advertisers (R4 reinforcing feedback loop).

More Advertisers raises the platform Revenue and Prof-
its, which helps attract AI/Engineering Talent, which 
further helps drive a higher Quality of Search Algorithm, 
which brings even more Users and more Advertisers (R5 
reinforcing feedback loop). 

AI/Engineering Talent brings improvements to Quality 
of Ad Matching Algorithm, which leads to more Adver-
tisers (R6a feedback loop), as well as higher Quality of 
Ads and more Users (R6u feedback loop).

AI/Engineering Talent is also crucial for improving Infra-
structure Efficiency, as they optimize digital infrastruc-
ture at scale, aided by Moore’s Law. This helps increase 
Profits, which helps attract event more AI/Engineering 
Talent (R7 feedback loop).

Moreover, serving more Users and Advertisers leads to 
more Data from Infrastructure Operations (e.g., running 
sophisticated data centers), which is used to further 
improve Infrastructure Efficiency and Profits, with asso-
ciated positive effects on Users (R7u feedback loop) 
and Advertisers (R7u feedback loop).

All these reinforcing feedback loops provide the core 
structure of the ad-based platform business model and 
drive its performance, growth, and sustainability. The 
business model performance can be measured by Prof-
its, as well as by market-share (number of Users and 
Advertisers).

 
Figure 1. Advertising based digital content and services platform business model (e.g., Google) 
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Figure 1: Advertising based digital content and services platform business model (e.g., Google)
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Figure 1 also shows one balancing feedback loop that 
may moderate the effect of the reinforcing loops. As 
the platform attracts more AI/Engineering Talent, and 
has to pay higher salaries due to Competition for Tal-
ent, the Talent Cost increases and this hurts Profits (B1 
balancing loop).

Analysis and Key Insights
AI as a field aiming to build and understand intelligent 
systems, has a long history and applications, such as 
expert systems, natural language processing, robotics 
etc. (Russell and Norvig, 2010). But recent advances in 
AI, especially in the form of machine learning and neural 
networks (deep learning), allowed for more innovation 
and elevated the use of AI in business as a primary con-
cern of business leaders (McKinsey, 2018). For exam-
ple Google has been using algorithms that learn from 
data in search since the company’s inception.But most 
recently, Google has substantially improved the quality 
of search results using deep learning algorithms, such 
as BERT (Nayak, 2019).  

Several researchers have written about the busi-
ness effect of AI, exploring issues such as the future 
of work, bias and trust, and the economics of AI (Raj 
and Seamans, 2019). For example, (Agrawal, Gans and 
Goldfarb, 2018, 2019) argue that AI lowers the cost of 
prediction, and this has significant implications for 
managers. The unique perspective of our article is that 
it looks at the effect of AI at the level of the business 
model. We use the proposed framework to understand 
the effects of AI on business model innovation, focus-
ing on the platform business model.

Figure 1 shows that AI has a crucial effect on a plat-
form business model, because it enables new reinforc-
ing feedback loops that constitute the core structure 
of the business model and drive its growth and profit-
ability. AI may also strengthen, or speed up, existing 
reinforcing feedback loops. Table 1 summarizes the 
effects of AI in a template of three elements: AI for 
User Experience, AI for Advertiser Experience, AI for 
Efficient Infrastructure at scale. Each element is a 
cluster of feedback loops. In all three elements, Data is 
a strategic resource connecting AI with Business Model 
Innovation. We summarize selected insights from each 
element.

AI for User Experience: Data from Users is a key 
resource in this cluster of feedback loops that reinforces 
an improvement of user experience over time. AI/Engi-
neering talent leverages Data from Users to improve 
the Quality of Search Algorithm, which improves the 
user experience concerning access to Content (R0, R2, 
R5). AI/Engineering talent leverages Data from Adver-
tisers to improve the Quality of Ad-matching Algo-
rithm, which enhances the user experience for relevant 
advertising (R4). Other secondary feedback loops that 
help attract AI/Engineering talent (either through more 
revenues or lower infrastructure costs) also contribute 
to better user experience (e.g., R6u, R7u).

AI for Advertiser Experience: Data from Users is a 
crucial resource in this cluster of feedback loops that 
reinforce an improvement of user experience over time. 
AI/Engineering talent leverages Data from Advertisers 
to improve the Quality of Ad-matching Algorithm (R3), 
which improves the targeting of Users. Feedback loops, 
such as R4, that increase the number of Users are 

AIBM Template Element
Key Feedback 

Loops
Primary data 

resources Other key resources

AI for User Experience R0, R2, R5, R4 Data from Users, Data 

from Advertisers

AI/Engineering Talent, Search Algorithm, 

Ad-Matching Algorithm

AI for Advertiser Experience R3, R4 Data from Advertisers AI/Engineering Talent, Ad-Matching 

Algorithm

AI for Efficient Infrastructure at scale R7, R7u, R7a Data from Infrastruc-

ture Operations

AI/Engineering Talent, Infrastructure  

Optimization Algorithms

Table 1: AIBM template – Key effects of AI on business model
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crucial to the business model. Other secondary feed-
back loops that help attract AI/Engineering talent also 
contribute to better advertising experience (e.g., R6a, 
R7a).

AI for Efficient Infrastructure at scale: AI/Engineer-
ing talent leverages Data from Infrastructure Opera-
tions to improve the Efficiency of Infrastructure, which 
increases Profits and help attract even more AI/Engi-
neering talent in a competitive market for talent (R7). 
Other secondary feedback loops that help attract more 
Users and more Advertisers help the company collect 
more Data from Infrastructure Operations, contributing 
to improved economies of scale (R7u, R7a).

We can now generalize these mechanisms into two 
high-level AI-related processes that apply to all busi-
ness models: data accumulation and data exploitation.
 
Data accumulation is the process of aggregating data 
from serving customers and other business processes 
and operations. Figure 1 shows how Data from Users, 
Data from Advertisers, and Data from Infrastructure 
Operations accumulate in the platform business model. 
Data from external sources (data acquisition) can sup-
port data accumulation when necessary.

Data exploitation is the process of using Artificial 
Intelligence (AI) to leverage accumulated data to cre-
ate business value. Data exploitation helps improve 
the quality of platform services and business pro-
cesses, as well as the overall performance of the busi-
ness model. Figure 1 shows how the platform business 
model exploits data to improve the Quality of Search 
Algorithm, Quality of Ad Matching, and Infrastructure 
Efficiency.

Our causal model shows that data accumulation and 
data exploitation are crucial processes. Most impor-
tantly, those two processes reinforce each other: the 
more data a platform accumulates, the more data it 
can exploit, which helps collect even more data. 

Discussion and conclusion
The unique contribution of this article is that it brings 
together the BMI and AI concepts, and it analyzes the 
effects of AI at the level of business model. 

This article makes progress towards understanding 
business models as complex systems (Massa, Viscusi 
and Tucci, 2018). We focused on the dynamic, not the 
combinatorial, complexity of a business model. We pre-
sented a framework for describing the structure of dig-
ital business models using causal loop diagrams (CLD). 
The framework brings together key platform resources, 
such as data, algorithms, AI talent, and infrastructure. 
We proposed a three-element template (AIBM), and 
we showed that the feedback loop concept is critical 
in understanding the effects of AI at the level of busi-
ness model. We generalized our discussion into data 
accumulation and data exploitation processes that 
reinforce each other. 

Our research provides several insights for managers 
and entrepreneurs. First, mapping the business model 
using CLDs can be very powerful in the fast-changing 
digital economy, where platforms and platform ecosys-
tems are prevalent (Jacobides, Cennamo, & Gawer, 2018; 
Katsamakas, 2014; Parker, Van Alstyne, & Choudary, 
2016). A focus on feedback loops can help managers 
map the core structure of their business model that 
drives behavior and business performance. Moreover, 
it supports communication and assists managers and 
entrepreneurs to refine their mental models (Groesser 
and Jovy, 2016; Moellers et al., 2019).

Second, managers need to understand and invest in the 
AI feedback loops in their business model. An AI strat-
egy for BMI should seek to create, rewire, strengthen, 
and speed-up AI feedback loops in the business model. 
Managers and entrepreneurs need to ask: Do the ”AI 
feedback loops” work for our company? Or they work 
against our company? How can we best leverage the ”AI 
feedback loops” in our BMI initiatives? 

Third, managers need to invest in the reinforcing mech-
anism of data accumulation and data exploitation to 
maximize the value of AI in their company.

We call for more research that accounts for the dynamic 
complexity in the context of BM and AI. Future research 
could map and analyze the CLDs of more business 
models, and synthesize that knowledge into generic 
patterns. Moreover, future work could take the analysis 
a step forward, building computational models. 
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