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Abstract 
Modern railway signal systems allow the collection of very large data sets 
(more than a thousand values). These data sets are often rounded by the 
signal technology, so that the values are effectively discrete. This paper 
reviews other literature on fitting distributions to large data sets, and then 
shares the experience of distribution fitting to a large data set from the 
Danish railways. 

 
1. Introduction 
 
Modern railway signal and control systems are capable of collecting and storing very large quantities of 
train operation data.  This data is increasingly available to researchers and management staff, and can be 
studied on common desktop computers. However, the large volume of data reveals new patterns of 
behavior that in some cases contradict prior findings. This paper reviews some prior literature on the 
subject of probability distribution fitting to operations data, and shares some learned best practices from 
analysis of a Danish railway line with high traffic density. 

The most common analysis activity is the study of punctuality data, either to assess train service 
performance for managerial or contractual activities, or to understand the train performance so that 
services may be modified and improved in the future. Very frequently in the literature, the measures of 
interest are the deviations (and usually delays) from plan or timetable of train arrivals, train departures, 
and the time spent idle at the platform (dwell time). The statistics and distribution of this data are 
frequently important to management, as they often form the basis of contractually agreed customer 
service levels. The data should also be understood in detail to understand the impact of new or revised 
customer service commitments. 
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Statistical analysis of and distribution fitting to this data is also important to operations planners. The 
analysis of the data can reveal patterns of operation and potential control variables [Cerreto et al., 2018]. 
Most commonly, theoretical distributions are fitted to the data so that train operations may be simulated 
or modeled with queuing theory [Welch and Gussow,  1986, Hallowell and Harker, 1998, White, 2005, 
Lindfeldt, 2015, Jovanovic et al., 2017]. Vromans [2005] demonstrates how different assumptions of delay 
distribution can significantly change the simulation output response, due to the nonlinear response of 
railway systems to delay events. It is important that these distributions are correctly fitted to the observed 
processes, and that is the primary subject of this paper. 

Section 2 offers a summary of goodness of fit theory and lessons learned from other areas of science. 
Section 3 reviews some published analysis of punctuality data from other railways. Finally, lessons learned 
from fitting distributions to data from the Danish Kystbane are discussed in Section 4 and concluding 
remarks and future research interests are offered in Section 5. 

 

2.  Methods of Data  Fitting  and Lessons from Other  Science Fields 
The most common method for fitting a distribution to a sample data set is the maximum likelihood 
procedure. Commercial software (in this paper, SAS 9.4 M4) estimates the parameters for a range of 
common distributions based upon the data set entered. For each distribution (e.g. normal, exponential, 
uniform, etc.), parameters are proposed that “maximize” the probability that the data set was sampled 
from the proposed distribution.  The result is a list of candidate theoretical distributions that could 
represent the data, but there is no guarantee that any of the candidates are appropriate. That is, the 
maximum likelihood method proposes parameters that best fit that distribution to the data, but the 
resulting distribution may still be a very poor fit to the data. 

The next step is to judge which, if any, of these distributions are in fact a “good” fit to the data set. The 
most common method of judging this “goodness of fit” is the one sample Kolmogorov-Smirnov test 
[Massey, 1951]. In most commercial software, the test reports a “p-value” that represents the probability 
that a more extreme data set than the one under consideration could have been generated with the 
distribution under consideration. The smaller the p-value, the less likely that the data set under 
consideration could have been drawn from the reference distribution. In this case, small p-values imply that 
the sample data set is behaving significantly different than the controlling distribution, and that it is very 
unlikely that the proposed distribution generated the data studied. Very often p ≤ ,05 is selected as a key 
measure for rejecting the goodness of fit. 

A direct challenge to distribution fitting in large data sets is that the Kolmogorov- Smirnov test statistics are 
directly a function of the number of data points (size of sample, n).  As the data set approaches an infinite 
number of samples, the test statistic becomes infinitely strict. This can create challenges to fitting a 
theoretical distribution if, for example, the data contains biased noise, or other patterns of behavior 
[Johnson and Wichern, 2007]. 

Browne and Cudeck  [1992] discusses at length the question of what defines “good fit”. They note that 
often when data is dirty or originating from a real process, no distribution will truly fit the data. 
Paradoxically, when the data sample is small, theoretical distributions will appear to have a good fit.  When 
the data sample from the same process is larger, the distributions will often fail the goodness of fit test. 
Browne and Cudeck states, “Statistical goodness-of-fit tests are often more a reflection on the size of the 
sample than on the adequacy of the model” and “Model selection has to be a subjective process involving 
the use of judgment.”  Browne and Cudeck reviews the various statistical methods, and then propose that 
the hypothesis test should not seek to achieve a perfect error sum of zero, but should seek some subjective 
allowable error such as 5%. They call this the “null hypothesis of close fit”. 

The exponential distribution is a fundamental distribution in many applications such as queuing theory and 
simulation. In the absence of sufficient data, it is often recommended as a default modeling assumption 
[Law and Kelton, 2000, Harrod and Kanet, 2013]. Bolotin [1994] examines the fit of the exponential 
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distribution to telephone circuit holding times. The research considers data sets of greater than n = 1.000, 
and finds that the ordinary exponential distribution is a poor fit to the behavior. One discovery presented is 
that the telephone data fails to adhere to the “memoryless” property of the exponential distribution.  In 
short, the distribution of future events in the exponential distribution should be independent of the 
completed events, but in the telephone circuit data there is a very clear growth in the mean remaining 
circuit hold time as elapsed circuit time increases. In Section 4, this will be shown to be the case also for 
railway delay data. 

Bolotin [1994] demonstrates that a log normal distribution (to base 10) is a much better fit to the 
telephone circuit data.  The research then further demonstrates that aggregate data can clearly be 
decomposed into identifiable groups based on specific call types (voice, fax machine, data), and then the 
aggregate distribution  is best represented by a mixture distribution of log normals. The research further 
hypothesizes that the log normal distribution of the call time originates from the human perception of 
time, and a psychophysical law called “Weber’s Law”.  The principal of this theory, is that in order for 
stimulus to be registered by the psychi, it must increment in proportion to the stimulus that is already 
present. 

 
3.  Some Prior Studies on Railway Punctuality Data 
 
Many prior papers consider the distribution fitting  and analysis of railway punctuality data.  A sample of 
prior studies are reviewed here in chronological order. Goverde [2005] offers what may be the earliest 
extensive study of railway punctuality (see also Goverde [2001]). This study examines a data set of 16 trains 
per hour from one week of September, 1997 at Eindhoven railway station. The data is segregated by train 
service, and there are 13 listed services with an average sample  size of n = 93 in arrival data and n = 103 in 
departure data. Data is further grouped as arrival delay, departure delay, and dwell times, and evaluated 
separately. Exponential distributions fit 10 out of 13 train services with p ≥ ,05 from the Kolmogorov-
Smirnov test. Seven of the train services are through services, and normal distributions fit all of their dwell 
times with the smallest p-value recorded at 0,31.  

This same data set forms the basis of further selective studies such as Goverde and Hansen [2001], which 
finds that recorded delays show much higher standard deviation than mean. The data demonstrates non-
independent behavior such as dwell times of late arriving trains exceeding scheduled dwell time, which is 
counter intuitive  to timetable design expectations. Also discussed in detail is how data collected from the 
signal system does not represent actual platform times and must be adjusted and cleaned for many factors. 
The Netherlands Railways tool for this activity is called TNV-Prepare/Filter.  In most cases, the last 
measurement point before a station is 1 km out, and the departing measurement point is located at the 
platform exit signal. The stopping point of trains may also vary by train length and passenger access point 
location on the platform. 

Yuan and Hansen [2002] and Nie and Hansen [2005] should be read together, as they discuss different 
aspects of the same data set. Both papers consider data from train movements in and around Hague 
Holland Spoor and Hague Central stations in September, 1999, and both papers use the data management 
methods of Goverde and Hansen. Yuan and Hansen examines a data set of arrivals and departures at Hague 
Holland Spoor, consisting of 24 arrivals and departures per hour, 450 trains per day, and 10.000 data 
points. The study notes that the data demonstrates that the longer the train route, the higher the 
deviation. Fitting of distributions is by maximum likelihood method and single sample Kolmogorov-Smirnov 
test.  Trains are divided into 24 classifications by route and train type, and distributions fitted to these 
groups, approximately n = 416 per group. For 18 of these groups, late arrivals fit to an exponential 
distribution and excess dwell times fit to a normal distribution. 

Nie and Hansen [2005] performs a detailed micro analysis of the traffic between stations Hague Holland 
Spoor and Hague Central, a distance of 1,65 km.  The data (September 1999) consists of about 8 trains per 
hour, or 4.320 data points.  The study finds that  a normal distribution fits the running time, but neither the 
departure nor arrival delays could fit a distribution  satisfying the Kolgomorov-Smirnov test at α = ,05. It is 
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interesting to note that this is essentially the same data set under analysis in the same research group, but 
what is different is that the sample size in Nie and Hansen is approximately ten times larger than that in 
Yuan and Hansen.  

Yang et al. [2017] fits distributions to the delay data of the Guangzhou Railway Corporation high speed line. 
The data set has 11.452 delay events, including delays causes, over 8 months in 2015. Yang et al. does not 
clearly state whether the data is arrival or departure delays. Distribution fitting is by maximum likelihood 
and Kolmogorov-Smirnov, with some additional investigation of skewness and kurtosis by Cullen and Frey 
graphs. The primary finding is that a lognormal distribution is frequently appropriate. When the data is 
segregated by delay cause (and sample size is smaller), the p value for goodness of fit is significantly higher. 
The p value for goodness of fit for the aggregate data distribution is ,06. Finally, Wen et al. [2017] examines 
a data set of only primary delays on the high speed railway between Wuhan and Guangzhou, China. The 
data set consists of 1.249 records over ten months in 2015. Lognormal  distributions are proposed  as best 
fitting the data. 

 
4.  Experience Gained from Study of the Danish Kystbane 
 
As part of the IPTOP project [Nielsen, 2017], over five years of operating data is collected in a single 
database for analysis. In this section, distributions are fitted to departure delays from a small portion of this 
data, 75.244 records (!). The data comes from the “Kystbane”, the coastal railway running north from 
Copenhagen, from weekdays in the period September through November, 2014, inclusive. Only 
northbound traffic passenger traffic is considered. Freight traffic is negligible and typically only at night, and 
is excluded. Three services are operated: ØP trains running in “Øresund” service from Sweden (26.001 data 
points), ØK trains running in local coastal service only (44.679 data points), and ØD trains running in peak 
demand periods only (4.564 data points).  The data set covers eleven stations, from Østerport to 
Snekkersten, with an average distance between stations of 3,98 km. The three train services have different 
stopping patterns. Similar to the Netherlands railways, this data is collected from the signal system, and is 
adjusted to correctly identify times at the platform in stations [Richter et al., 2013]. 

The first experiment is to attempt to fit a distribution to the complete data set. The normal, lognormal, and 
exponential distributions are fitted to the data, and none of them offer a Kolmogorov-Smirnov (KS) p-value 
greater than 0,001. All three are bad fits to the data. The best fitting, by judgment of the probability plot, is 
the exponential shown in Figure 1, which displays the histogram, the fitted exponential distribution, and 
the probability plot in inset. The deviation in the probability plots for the normal and lognormal 
distributions (not shown) is quite extreme. 

Note that the data contains some early departure records. If the data is limited to only late departures 
(deviation greater than zero, n = 55.585), there are still no acceptable model fits, and the probability plots 
are even worse in their display.  However, for the rest of this analysis, only late departures will be studied, 
as they are typically of greater interest when judging timetable performance.  If the sample size is limited, 
the lognormal distribution becomes acceptable in its fit, which follows the theories and examples discussed 
in Section 2. For example, if random 0,5% samples of the data set (n ≈ 275) are fitted, KS p-values for the 
lognormal goodness of fit ranged from a low of 0,073 to a high of 0,50. However, the probability plot still 
displays strong divergence at the upper quartile. That is, smaller portions of the larger data set pass the 
goodness of fit test, but as the sample size increases, it becomes difficult to evaluate the data set using 
standard methods. 

Figure 2 repeats the memoryless property investigation of Bolotin [1994]. Under the memoryless property 
of the exponential distribution, the time that has passed should have no influence on the statistical 
distribution of the remaining values. To test this, 2.497 random samples from an exponential distribution 
with mean 2,5 minutes, the same as the Kystbane delay sample, are generated. Calculations are made at 
regular intervals, where the mean of the remaining delay is calculated. The remaining delay is represented 
by Equation (1), where α is the reference elapsed time, and δ is the original delay 

https://journals.aau.dk/index.php/djtr


Steven Harrod, Georgios Pournaras, Bo Friis 

https://journals.aau.dk/index.php/djtr ISSN 2596-9196 5 

𝛿𝛿 − 𝛼𝛼 𝛿𝛿 > 𝛼𝛼 (1) 

           null    otherwise  

 

The mean value of the positive remainders is then charted against the test level. The same values are 
calculated from the Kystbane data sample as well. As can be seen in the figure, the exponential sample 
exhibits a nearly constant remaining expectation, but the Kystbane data exhibits nearly linear growth. 
Bolotin described this as “the longer a [telephone]  conversation  goes, the longer it is likely to continue”, 
and a similar analogy can be made about the Kystbane delays, the longer a train is delayed, the more 
severe a delay it is likely to be experiencing. 

One consideration might be that the behavior is a function of the individual station, and that by limiting  
the analysis to a specific station, different (better) results might be obtained. Rungsted Kyst is an example 
of a candidate station for focused analysis.  It is the ninth station northbound from Copenhagen. Only local 
service trains stop at this station, all other trains running through without stopping, and there are 4.494 
late departure data points for Runsted Kyst.  This limitation does not, however, lead to acceptable 
distribution fits. The results are nearly the same as for the whole data set analysis. When a random smaller 
(0,5%) sample of the data is fitted, in many cases lognormal and exponential distributions will appear 
acceptable. 

From the preceding initial analysis, the exponential distribution is not a good representation of the late 
departure data. From the preliminary trials, and the cited literature, a lognormal distribution is a better 
candidate, if only the fit could be established for a large data sample. Bolotin [1994], previously discussed, 
also offers encouragement to consider mixed distributions. A mixed distribution is a blend of two or more 
distributions. It typically takes the form of p(x) = w1f1(x) + w2f2(x) + ...  where w is a proportion summing 
to 1. The distribution is then a collection of individual point values, each drawn from one of the functions 
fi(x), selected with probability wi. 

Mixed distributions are now accessible from commercial statistics software. SAS offers the FMM  
procedure. This analysis will use the R statistical software platform (version 3.5.1), and the “mixdist” 
package (version 0.5-5). Various trials were also conducted using the FMM procedure in SAS, and these 
guided the final conclusions here. One of the challenges in fitting mixed distribution models is that the 
result may be influenced  by the initial  model parameters supplied to the routine.  The most critical input 
parameter is the number of expected component distributions. A common recommendation is to view the 
histogram of the data and try to count the number of component shapes. 

The 55.585 records of late departure (delay greater than zero) were transformed to a log base 10. 
Examination of the histogram indicated at most two distribution components, and as expected, a mixture 
of normal distributions.  Earlier trials in SAS where a mixed exponential distribution was fitted often 
showed three components. Another parameter set that must be entered is a set of recommended starting 
values for the mean and standard deviation of the components.  Initially an effort was made to calculate 
these estimates by visually segregating the histogram in two overlapping halves, but in subsequent trials it 
was found that different starting values always lead to nearly the identical solution. The mixdist algorithm is 
quite efficient at finding the same solution quickly with nearly default values, for this class of problem. 

Figure 3 presents the fitted distribution, which is p(x) = 0,3792N (µ = −0,3845, σ = 0,6478) + 0,6208N (0,2593, 
0,4891). Plotted is a histogram, the sum of the two component distributions, and the two component 
distributions.  Note this function is not equivalent to a single normal distribution. The two normal 
distributions are not blended 1:1. The combined distribution in Figure 3 is not symmetric about its mean. 

Note the heavy point masses at the lower tail, which represent  essentially on time trains that  registered 
trivial  delay values. Unfortunately, even though this is a good fit, the standard goodness of fit statistic 
offered by the software (in this case Chi-square, the only option in Mixdist), rejects the fit unconditionally. 
An examination of the probability plot in Figure 4 demonstrates an extremely good fit in the most 
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applicable data range, but extreme deviation at the lower tail.  This is because the fitted distribution is 
returning a sample of delays very close to zero. 

At this point a certain “executive decision” is made that the final distribution should not have this tail, and 
the distribution  is modified to p(x)  = 0,3792max(−1,5, N (µ  = −0,3845, σ = 0,6478)) + 0,6208max(−1,5, N 
(0,2593, 0,4891)). This truncates the data and  concentrates the lower tail as a point mass of zero delay (not 
shown in the figure). Recall also that the earliness data has been discarded before the analysis began.   In a 
modeling or simulation task, this non-delay should be included in the simulation logic or distribution 
behavior, typically as a fixed probability of early departure (although in many cases early departures are 
discouraged by management, and are a separate topic of discussion). With this modification, the 
probability plot is much improved as in Figure 5. 

However, there is still that nagging problem of a lack of goodness of fit statistic.  The goodness of fit is 
hindered by the extremely large sample size, and the small amount of discrete step function in the data, 
visible as the stair step pattern in Figures 4 and 5. This occurs because the current legacy signal system in 
Denmark rounds train movements to an accuracy of +/- ten seconds (this will change with the future 
ERTMS installation). The Netherlands railways record data to the second, and the Italian railways record 
data to increments of 30 seconds.  

This discrete step pattern creates noise that disrupts the goodness of fit test. Further, it does not result in a 
proper discrete distribution, but a censored sample of the continuous delay distribution. Law and Kelton 
(2000) explain how discrete data can be difficult for both the Chi-square and Kolmogorov-Smirnov 
goodness of fits tests. In the case of the Kolmogorov-Smirnov test, critical values must be computed for 
each case with significant effort. For the Chi-square, the ideal test intervals should be equiprobable, but 
this is hard to accomplish in agreement with the intervals already defined by the discrete unit size. 

An alternative goodness of fit test is the Wilcoxon rank sum test. Goverde (2001) utilizes this test frequently 
to judge whether the distribution of delay data is different between periods of day such as morning and 
afternoon. This may be performed in R statistical software with the function wilcox.test (paired = false). The 
process for conducting this test is presented in Figure 6. The application in Figure 6 is novel because the 
Wilcoxon test is utilized to assess goodness of fit. This test on the data in Figure 5 returned a satisfactory 
result of p = 0,678. 

 
5. Conclusion 
 
Modern data systems make very large data sets available to railway planners, but the statistical methods in 
common commercial statistics software are not designed to study these large data sets, and can frequently 
give misleading results. Some of the earlier published analyses of railway delays offer conclusions that may 
be incorrect because of the small sample size. Railway systems are frequently non-linear in their response 
to events, and small differences in the assumed probability distributions of events may lead to significant 
differences in analysis and simulation output. 

Many earlier studies have recommended the exponential distribution as representative of railway 
processes, but closer examination of a large data set from the Danish railways shows that this is not a good 
default distribution.  Examination of the data set supports a mixed distribution of lognormals, which is in 
agreement with research from the telephone industry.  Care must be taken to remove or account for the 
large point mass of on-time or trivially late trains. The goodness of fit of these models and data sets can be 
supported with the Wilcoxon signed-sum test. All of these methods are accessible in advanced commercial 
software, but they are not the default options in software such as SAS, and no warning is provided to the 
user that alternative methods should be used. With some effort, the correct methods can be found in 
commercial software, but they must be invoked specifically. 

The authors have identified the generalized linear model of exponential family distributions as another  
potential distribution model than can account for the full range of detail in the source data, such as 
location, train type, traffic, etc. Research in this area is ongoing. 
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Figure 1: Distribution fit of exponential to complete data set of 75.244 observations, consisting of northbound deviations from 
timetable at eleven stations, weekdays, September to November 2014. Shown is histogram, fitted exponential distribution, and 
inset is probability plot. Horizontal axis “F1” is minutes deviation from timetable. 
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Figure 2: Test of memoryless property of Kystbane data. Vertical axis is mean value of remaining delay after value on horizontal 
axis scale has passed (which is marked in multiples of the whole data set mean). Solid line is a sample from an exponential 
distribution, and dashed line is actual result from sample data. 
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Figure 3:  Mixed distribution fit to late departure data (sample size n=55.585, eleven stations on Kystbane).  Data transformed to 
log base 10.  Shown are histogram, summed distribution (green) and two component normal distributions (red).   Triangle on x-
axis is mean of component distribution. 
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Figure 4: Probability plot of the late arrival sample data against the theoretical mixed distribution from Figure 3 
 

 
Figure 5: Probability plot of the late arrival sample data against the theoretical mixed distribution truncated to remove the lower 
tail consisting of on-time and early arrivals (x=-1,5). The point mass of the truncated data is not shown. 
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Figure 6: Methodology used to validate distribution fitting 
 
  

https://journals.aau.dk/index.php/djtr


Steven Harrod, Georgios Pournaras, Bo Friis 

https://journals.aau.dk/index.php/djtr ISSN 2596-9196 11 

 
References 
 
Bolotin, V. A., 1994. Telephone circuit holding time distributions. In:  Labetoulle, J., Roberts, J. (Eds.), 
Fundamental Role of Teletraffic in the Evolution of Telecommunications Networks. Vol. 1. Proceeding of the 
14th International Teletraffic Congress - Itc 14, Elsevier, pp. 125–134. 

Browne, M. W., Cudeck, R., 1992. Alternative ways of assessing model fit. Sociological Methods and Research21 
(2), 230–258. 

Cerreto, F., Nielsen, B. F., Nielsen, O. A., Harrod, S. S., 2018. Application of data clustering to railway 
delay pattern recognition. Journal of Advanced Transportation, in press–. 

Goverde, R., 2001. Statistical analysis of train traffic:  The Eindhoven case. Tech. rep., The Netherlands 
TRAIL Research School, Delft. 

Goverde, R., 2005. Punctuality of railway operations and timetable stability analysis, TRAIL thesis series no. 
t2005/10. Ph.D. thesis, Delft University of Technology, Delft. 

Goverde, R. M., Hansen, I. A., November 2001. Delay propagation and process management at railway 
stations, document 175. In: Proceedings CD-Rom of the World Conference on Railway Research (WCRR 2001). 
Koln. 

Hallowell, S. F., Harker, P. T.,  1998. Predicting on-time performance in scheduled railroad operations: 
Methodology and application to train scheduling. Transportation Research Part A 32 (4), 279–295. 

Harrod, S., Kanet, J. J., 2013. Applying work flow control in make-to-order job shops. International Journal of 
Production Economics 143, 620–626. 

Johnson, R. A., Wichern, D. W., 2007. Applied multivariate statistical analysis (sixth edition). Pearson 
Education, Inc. 

Jovanovic,  P., Kecman, P., Bojovic,  N., Mandic,  D., 2017. Optimal allocation of buffer times to increase 
train schedule robustness. European Journal of Operational Research 256, 44–54. 

Law, A. M., Kelton, W. D., 2000. Simulation Modeling and Analysis, 3rd Edition. McGraw-Hill, Boston. 
Lindfeldt, A., 2015. Railway capacity analysis - methods for simulation and evaluation of timetables. Ph.D. 
thesis, KTH  Royal Institute of Technology. 

Massey, Frank J., J., 1951. The K olmogorov-Smirnov test for goodness of fit.  Journal of the American 
Statistical Association 46 (253), 68–78. 

Nie, L., Hansen, I. A., 2005. System analysis of train operations and track occupancy at railway stations. 
European Journal of Transport and Infrastructure Research 5 (1), 31–54. 

Nielsen, O. A.,  May 2017. IPTOP  - overview, integrated public transport optimisation and planning. In: 
Proceedings of Bane Konference (RailCPH), 2017. Banebranchen, Copenhagen. URL 
http://www.banekonference.dk/sites/default/files/slides/12/1500_IPTOP%20Otto%20Anker%20
Nielsen%20v2.pdf  

Richter, T.,  Landex, A., Andersen, J. L. E., November 2013. Precise and accurate train run data:  
Approximation of actual arrival and departure times. In: 10th World Congress on Railway Research. UIC, 
Sydney. 

Vromans, M.,  2005. Reliability o f  railway systems, TRAIL thesis series t2005/7. Ph.D. thesis, Erasmus 
University, Rotterdam. 

Welch, N., Gussow, J., 1986. Expansion of Canadian National Railway’s line capacity. Interfaces 16 (1), 51–
64. 

http://www.banekonference.dk/sites/default/files/slides/12/1500_IPTOP%20Otto%20Anker%20Nielsen%20v2.pdf
http://www.banekonference.dk/sites/default/files/slides/12/1500_IPTOP%20Otto%20Anker%20Nielsen%20v2.pdf
http://www.banekonference.dk/sites/default/files/slides/12/1500_IPTOP%20Otto%20Anker%20Nielsen%20v2.pdf


Distribution fitting for very large railway delay data sets with discrete values 

https://journals.aau.dk/index.php/djtr ISSN 2596-9196 12 

Wen, C., Li, Z., Lessan, J., Fu, L., Huang, P., Jiang, C., 2017. Statistical investigation on train primary delay based 
on real records: evidence from Wuhun-Guangzhou HSR. International Journal of Rail Transportation 5 (3), 
170–189. 

White, T., 2005. Alternatives for railroad traffic simulation analysis. Transportation Research Record 1916, 
34–41. 

Yang, Y., Li, J., Wen, C., Peng, Q., Lessan, J., 2017. Statistical distribution analysis of high-speed railway delay 
causes:  Evidence from Guangzhou R ailway Corporation in China. In:  RailLille  2017 - 7th Interna- tional 
Conference on Railway Operations Modeling and Analysis. International Association of Railway Operations 
Researchers, Lille, France, pp. 1511–1531. 

Yuan, J., Hansen, I., 2002. Punctuality of train traffic in Dutch railway stations. 10.1061/40630(255)73., 
522–529. 

https://journals.aau.dk/index.php/djtr

	Article info
	Abstract

