
Perspektiv nr. 3, 2003

29

Introduction
Maps are important tools for
visualising geographic loca-
tions. Traditionally, printed
paper maps have been used,
but technological develop-
ments have made possible
the production of digital
maps. Furthermore, the in-
troduction of the Internet and
mobile technology has made
it possible for a computer (or
a mobile device) to communi-
cate with remote databases.
This way cartographic data
from a remote database, dis-
tributed in real-time, can be
displayed locally. In this paper
we denote this kind of map as
a real-time map.

A real-time map has both ad-
vantages and disadvantages
compared to a printed paper
map. One obvious disadvan-
tage of the real-time map is
the small size of the display,
which makes it difficult to get
a good overview of a larger
area. The main advantages of
a real-time map are the pos-
sibility to always use the most
updated data source and the
possibility to integrate the
map into a service. Exam-
ples of services where maps
are valuable are navigational
services, Yellow Pages and
emergency services.

Today, most of the carto-
graphic data that are dis-
tributed via the Internet and
to mobile devices are raster
data, but the emerging XML
standards will make it easier
to distribute vector data. The
use of vector data has two ba-
sic advantages. Firstly, a map
stored in vector format gen-
erally requires less storage
space than a map stored as
raster data. This also means
that transmission times are
shorter for vector data. Sec-
ondly, it is easier to integrate
and generalise vector data
than raster data. These inte-
gration and generalisation op-
erations are important when
creating the map components
of user-friendly services.

This paper describes methods
for manipulating cartographic
vector data for creating
real-time maps. It focuses
particularly on a technical en-
vironment for integrating and
generalising vector data. The
paper starts with a description
of the system architecture
for distributing cartographic
data from a database to an
end user. This is followed by a
description of a Java program
for manipulating the vector
data and a case study of this
program. The paper concludes
with a discussion.

System architecture
The system architecture
described here has been de-
veloped in the EEC-project
GiMoDig (GiMoDig, 2003).
The objective of the GiMoDig
project is to develop and
test methods for delivering
geospatial data to a mobile
user by means of real-time
data-integration and gener-
alisation. The project aims at
the creation of a seamless
data service providing access,
through a common interface,
to the primary topographic
geo-databases maintained
by the National Mapping
Agencies (NMAs). A special
emphasis will be put on using
cartographic visualization ap-
propriate for mobile terminal
with limited display capabili-
ties. GiMoDig is not primarily
a project for creating services,
the aim is rather to build an
infrastructure which other
partiescan use for building
services.

The GiMoDig system architec-
ture is only briefly described
in this paper (see GiMoDig,
2003 and references within
for further details). Further-
more, only the data flow from
the database to the end user
is presented (an end user is,
in this context, a person that
is using a service built on
the GiMoDig infrastructure).

Real-Time Data Generalisation and Integration using JAVA

Lars Harrie and Mikael Johansson, National Land Survey of Sweden

To present real-time maps on a computer or on a mobile device requires data integration and gener-
alisation in real-time. This paper describes a Java program that performs some simple generalisation
methods. The program is based on open source products that conform to the Open GIS Consortium
(OGC) standards, and contains robust implementations of the most fundamental geometrical algo-
rithms. In the paper a minor case study is presented.

Perspektiv nr. 3, 2003

30

The end user request in the
GiMoDig project, follows the
standards Web Map Service
(WMS) and Web Feature
Service (WFS) from Open GIS
Consortium (OGC, 2003).

The distribution of cartograph-
ic data is performed using two
XML standards: Geographic
Markup Language (GML; OGC,
2003) and Scaleable Vector
Graphics (SVG; W3C, 2003).
These two standards are
complementary. GML is used
for storing and distributing
geographical data. The GML
standard supports storage of
object attribute information
about geodetic reference sys-
tems etc., but it does not sup-
port storage of symbolisation.
SVG is a general standard for
presenting vector data on the
Internet (and there are spe-
cial dialects for use in mobile
devices). The format supports
symbolisation but not typical
geographical data, such as at-
tributes and information about
geodetic reference systems.

In this study, the cartographic
data are distributed from the
database to the end user as
shown in Figure 1. A request
from the end user is sent to
the database and then the
cartographic data is distrib-
uted from the database as
GML files. The generalisation
and integration of the carto-
graphic data is performed in a
Java program and a new GML
file is generated. This GML
file is then translated into an
SVG-file in an XSLT-transfor-
mation. Finally, the end user
can browse through the SVG
file in his computer or mobile
device.

There are several variants of
this workflow. One possibility
would be to create an SVG
file directly in the Java-pro-
gram. This means that an
XSLT transformation is not
necessary. A second possibil-
ity would be to manipulate
the cartographic data in the
XSLT transformation (with
some Java extensions); which
means that there would not
be a need for the Java pro-
gram. The latter approach
has successfully been used by
Lehto and Kilpeläinen (2000,
2001a, 2001b). However, this
approach has certain limita-
tions. Since XSLT transforma-
tions only treat one object at
a time, it is not possible to
implement methods which
involve interactions between
objects. This type of inter-
action modelling is often
required when creating a
real-time map for a service.
Some examples where model-
ling interactions of objects are
required:
• Solving spatial conflicts

between objects (or more
correctly, the symbols that

represent these objects).
These spatial conflicts do
often occur, for example,
when building symbols are
exaggerated (to be read-
able) and therefore infringe
on neighbouring road sym-
bols.

• Integrating “service data”
and cartographic data. For
example navigational data
in the form of arrows are
added to the map in a navi-
gation service. It is here
important that the arrows
do not hide important car-
tographic data.

• Aggregating objects. For
example, aggregating buil-
dings into built-up areas
(cf. Figure 3).

As the main theme of this
paper is the Java program for
manipulating the cartographic
data, the XSLT transformation
step is not further described
here. Details of how this step
is used in GiMoDig system
architecture can be found in
Lehto and Kilpeläinen (2001a,
2001b).

Java
program

New GML-file

Cartographic
database 2

GML file

GML file

XSLT
transformation

SVG-file

Cartographic
database 1

End user

Fig. 1. A schematic view of the distribution of cartographic
vector data from a database to a user.

Perspektiv nr. 3, 2003

31

A Java program for gener-
alisation and integration of
vector data
This section is devoted to the
Java program for generalising
and integrating cartographic
data (cf. the architecture in
Figure 1). The program con-
sists of six packages, of which
some are freeware and others
have been written within the
GiMoDig project. Furthermore,
some packages are general,
whilst others are data de-
pendent (such as object type
classes). The following six
packages are included:

Java Topology Suite
Java Topology Suite (JTS;
Vivid Solutions, 2003) is a
geometry and topology class
library. JTS was chosen as
environment for generalisa-
tion and integration mainly for
the following three reasons.
Like GML, JTS conforms to
the Simple Features Specifi-
cation for SQL (OGC, 2003).
This means that the basic
geometrical entities are the
same in the Java environment
as in GML and that there is no
need for geometrical transfor-
mations during the import of
the data into the Java envi-
ronment. The second reason
is that JTS contains robust
implementations of the most
fundamental geometrical al-
gorithms (in 2D). Thirdly, JTS
is open source and free to use
and modify in research.

Abstract feature classes ac-
cording to OGC-standards
In the OGC standards, the
general structure of carto-
graphic objects is stated (in
the standard the objects are

denoted features). This pack-
age contains abstract Java
classes that implement this
structure. The geometries of
these abstract feature classes
are stored in JTS classes and
linked using associations.

Object type classes
This package contains one
Java object class for each ob-
ject type. The object classes
inherit the general structure
from the abstract feature
classes. Clearly, this package
is data dependent; the classes
are dependent on the concep-
tual model of the cartographic
data. This differs from the two
packages above, which are
data generic.

Generalisation and integration
classes
The classes in this package
govern the generalisation and
integration processes. They
contain both the conceptual
framework of the process (the
framework for triggering the
methods) and the actual im-
plementations of the generali-
sation and integration meth-
ods. Since these methods
are partly dependent on the
cartographic data, this pack-
age has to be modified for the
data that it is applied to.

GML reader classes
This package contains trans-
lation classes for data stored
in a GMLfile; the classes
are based on a free parser
(Xerces) from Apache (2003).
In principal, our parser is a
modified version of the SAX-
parser described in McLaugh-
lin (2000).

Viewer
A viewer (see Figure 2) based
on standard Java API Swing
(Sun, 2003). The viewer is
only used for development
work.

The case study
The case study described be-
low deals with presenting a
real-time map on a small-dis-
play for personal navigation.
Since the display is small, it
puts high demands on the
selection of the cartographic
data that is to be shown. This
becomes problematic when
the user requires a consider-
able amount of cartographic
information. In personal navi-
gation, users often need both
a detailed map of the area
surrounding the user’s current
position as well as an over-
view map. In cartographic
terms, this means that the
user requires both large-scale
and small-scale cartographic
data. One possible way to
solve this problem is to use a
variable-scale map.

The variable-scale map used
in this case study is based on
Harrie et al. (2002). This type
of variable-scale map has a
circular cap where the scale
is homogeneous and beyond
which the radial scale con-
stantly decreases to a thresh-
old value (Figures 2 and 3).
The mapping function is
conformal in the centre of the
map (which, normally, should
be the user’s location) but not
in all parts of the map.

As seen in Figure 3, the central
part of the map is shown with
a larger scale than the parts

Perspektiv nr. 3, 2003

32

closer to the map borders.
The selection and level of
detail of the cartographic
data is appropriate in the
central part but, otherwise,
the map is too detailed. In
other words, cartographic
generalisation is required
for outer parts of the map.

The building objects in the
areas towards the edges of
Figure 3 are not discernible.
To improve the readability
of the map, aggregation
of the building objects into
built-up area objects was
performed in the western
part of the map. The aggre-
gation method was based
on convex hull (which is a

method in JTS). Unfortunately,
we are currently lacking tools
for performing this generali-
sation fully automatically. The
reason is that no topological
relationships are stored in the
GML file. This implies that it is
cumbersome to write a pro-
gram that creates the neigh-
bourhood partitions. In this
case study we have created
the neighbourhoods manually
in advance by digitising. How-
ever, the next version of GML
(3) supports storage of topo-
logical relationships and then
it will be fairly easy to create
a fully automatic building ag-
gregation function.

As seen in the southern part of
the map in Figure 3 the vari-
able-scale mapping function
introduced topological errors
between the road objects and
the building objects (the sym-
bols overlap). These types of
topological errors can occur
even though the variable-
scale mapping is continuous.
The reason is that a line seg-
ment is only described by its
end points in the mapping. To
circumvent this problem addi-
tional points should be added
on long line segments.

Discussion
Currently, we have only im-
plemented few generalisa-
tion and integration methods
within the Java program. To
make the program useful,
more methods need to be
implemented. The structure
of the program is built so that
the program easily should be
extendable. We would like to
include methods for:

Fig. 2. The original data from the City of Malmö, Sweden, shown
in the Java viewer. © The local municipalities in Skåne and the
National Land Survey of Sweden, 2002.

Fig. 3: A variable-scale map of the
same area as in Figure 2. Some of
the building objects in the western
part of the map were aggregated
to built-up areas.
© The local municipalities in Skåne
and the National Land Survey of
Sweden, 2002.

Perspektiv nr. 3, 2003

33

• simplifying and aggregat-
ing building objects (e.g.
methods by Regnauld,
1996),

• solving spatial conflicts
and simplifying objects by
using least squares meth-
ods (Harrie and Sarjako-
ski, 2002; Sester, 2000),
and

• treating data stored in a
multiple representation
database (a database
which consists of different
data sets connected by
links between objects rep-
resenting the same physi-
cal entities; see for ex-
ample. Buttenfield, 1993;
Kilpeläinen, 1997; Harrie
and Hellström, 1999).

Several of these methods re-
quire a spatial data structure
based on constrained Delau-
nay triangulation. Such a data
structure is implemented in
the Java program using code
from Shewchuk (1996), but
the triangulation has not yet
been utilised.

Real-time maps are critical
for time response. In this
paper we have not dealt with
computational or storage
complexity as the focus of
the paper is on the presenta-
tion of cartographic data on a
small display. In this case, the
cartographic objects that are
distributed are relatively few
and, therefore, the fact that
GML and SVG generate large
files is not too problematic nor
is the computational complex-
ity of the parsing and gener-
alisation.

Acknowledgements
The research described in the
paper is part of the GiMoDig
project, IST-2000-30090,
which is funded from the
European Union via the Infor-
mation Society Technologies
(IST) programme (GiMoDig,
2003). We would like to thank
Lassi Lehto (Finnish Geodetic
Institute) for the idea of us-
ing JTS, Lars-Håkan Bengts-
son (National Land Survey of
Sweden) for data transforma-
tions, Ian Brook for correct-
ing our English, the editors
for constructive comments,
and Tiina Sarjakoski (Finn-
ish Geodetic Institute) and
Monica Sester (University of
Hanover) for co-operation.
Test data for Malmö, Sweden,
were kindly provided by the
local municipalities in Skåne
and the National Land Survey
of Sweden.

References
Apache, (2003). Web site
of Apache XML Project,
xml.apache.org (accessed 21
January 2003).

Buttenfield, B. P., (1993).
Research Initiative 3: Multi-
ple Representations, Closing
report, National Center for
Geographic Information and
Analysis, NCGIA, Buffalo.

GiMoDig, (2003). Geospa-
tial info-mobility service by
real-time data-integration
and generalisation, http://
gimodig.fgi.fi/ (accessed 21
January 2003).

Harrie, L., and A.-K. Hell-
ström, (1999). A Prototype
System for Propagating Up-

dates between Cartographic
Data Sets. The Cartographic
Journal, Vol. 36, No 2. pp.
133-140.

Harrie, L., and T. Sarjakoski,
(2002). Simultaneous Graphic
Generalization of Vector Data
Sets. GeoInformatica, Vol. 6,
No. 3, pp. 233-261.

Harrie, L., Sarjakoski, L. T.
and L. Lehto, (2002). A Map-
ping Function for Variable-
Scale Maps in Small-Display
Cartography. Journal of Ge-
ospatial Engineering, Vol. 2,
No. 3, pp. 111-123.

Kilpeläinen, T., (1997). Mul-
tiple Representation and
Generalization of Geo-Data-
bases for Topographic Maps.
Publications of the Finnish
Geodetic Institute, No. 124,
Doctoral dissertation.

Lehto, L., and T. Kilpeläinen,
(2000). Real-Time Gener-
alization of Geodata in the
Web. International Archives of
Photogrammetry and Remote
Sensing, Vol. XXXIII, Part B4,
Amsterdam, pp. 559-566.

Lehto, L. and T. Kilpeläinen,
(2001a). Real-time Generali-
sation of XML-encoded Spatial
Data on the WEB. Kidner, D.
B. and G. Higgs, eds., (2001),
GIS Research in the UK, Pro-
ceedings of the GIS Research
UK, 9th Annual Conference
GISRUK 2001, April 18th –
20th, University of Glamorgan,
Wales, pp. 182–184.

Lehto, L. and T. Kilpeläinen,
(2001b). Generalizing XML-
encoded Spatial Data on the
Web. Proceedings of 20th In-

http://gimodig.fgi.fi/
http://gimodig.fgi.fi/

Perspektiv nr. 3, 2003

34

ternational Cartographic Con-
ference, August 6–10, 2001,
Beijing, China, Volume 4, pp.
2390–2396.

McLaughlin, B., (2000). Java
and XML, O’Reilly, Cambridge.

OGC, (2003). OpenGIS®,
http://www.opengis.org (ac-
cessed 21 January 2003).

Regnauld, N., (1996). Recog-
nition of Building Clusters for
Generalization. Proceedings of
the 7th Spatial Data Handling
Symposium, Delft, the Neth-
erlands, pp. 185-198.

Sester, M., (2000). Generali-
zation Based on Least Squares
Adjustment. International
Archives of Photogrammetry
and Remote Sensing, Vol.
XXXIII, Part B4, Amsterdam,
pp. 931-938.

Sun, (2003). Java Foundation
Classes, http://java.sun.com/
products/jfc/ (accessed 21
January 2003).

Shewchuk, J. R., (1996).
Triangle: Engineering a 2D
Quality Mesh Generator and
Delaunay Triangulator. In
First Workshop on Applied

Computational Geometry,
Philadelphia, Pennsylvania,
pp. 124-133.

Vivid Solutions, (2003).
Java Topology Suite, http:
//www.vividsolutions.com/
jts/jtshome.htm (accessed 21
January 2003).

W3C, (2003). Scalable Vec-
tor Graphics (SVG), http:
//www.w3.org/Graphics/SVG/
(accessed 21 January 2003).

Om forfatterne
Lars Harrie and Mikael Johansson, National Land Survey of Sweden, SE-801 82 Gävle
lars.harrie@lantm.lth.se, micke.j@goteborg.utfors.se

http://www.opengis.org
http://www.vividsolutions.com/jts/jtshome.htm
http://www.vividsolutions.com/jts/jtshome.htm
http://www.vividsolutions.com/jts/jtshome.htm
http://www.w3.org/Graphics/SVG/
http://www.w3.org/Graphics/SVG/
mailto:micke.j@goteborg.utfors.se

	Real-Time Data Generalisation and Integration using JAVA
	Designstrategi for web-kort
	Lars Harrie and Mikael Johansson, National Land Survey of Sweden

