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Abstract: This paper exploits the potentials of inferential statistics in its quest to answer two related questions, whether 

the exercises performed by students during their course in theoretical grammar really prepare them for the 

exam, and whether the students’ exam results can be predicted from their achievements in said exercises. This 

study is in the context of English Business Communication at Aalborg University, Denmark. Several statistical 

methods, various forms of regression analysis, are pursued in order to discover which one – if any – of them is 

best suited to make predictions as to future exam results. It is found that the exercises investigated do indeed 

contribute significantly to the students’ learning process, and that the exam results are predictable within a 

reasonable margin of error from the results of the exercises. Somewhat surprisingly, the simplest forms of linear 

regression and 1st degree polynomial regression are found to be the best predictors of the exam results, not any 

of the elaborate methods also tested. As a side effect, the study also reveals that the students’ level of knowledge 

of theoretical grammar prior to their entering the university has no appreciable influence on their exam results. 

Keywords: Learning of grammar, inferential statistics, language acquisition. 

1. Introduction 

It is a common and reasonable expectation that the exercises that the students in a course are required 

to do prepare the students for their exam. It is no less the case with a course on theoretical grammar. 

The purpose of this paper is to investigate to what extent this expectation is fulfilled in the case of the 

English Grammar course which first-semester students of English Business Communication at 

Aalborg University have to absolve. A related issue that is investigated is how predictable the exam 

results are from the performance of students during the course as documented through the exercises 

they do during the course. The purpose of investigating the predictability of the result of the grammar 

exam is to give the course teacher a tool to detect students who may be at risk of failing the exam. 

 The course investigated in this paper is a course on theoretical or descriptive grammar, in 

which the students have to learn concepts of grammar such as clause and phrase constituents, affixes 

and parts of speech, etc. This course has thus its focus on theoretical concepts applicable to English 

grammar. A separate course called Production of Written Texts focuses on the use of English, in which 

the students learn to employ grammar properly in practice. These two courses are of course tightly 

knit; so much so that they have a common portfolio exam at the end of the second semester. Also, the 

study regulation stipulates that learning theoretical grammar will improve the students’ mastery of 

English and their grammatical precision in using English (Study Board of Language and International 

Business Communication 2017). However, this paper concerns itself only with how well the students 

are prepared for their exam in theoretical grammar. It does not address the issue of how much of that 

knowledge is eventually converted into a practical command of English. For that question, see 

Madsen (2014). 

2. Inferential statistics 

This paper relies on the theory of inferential statistics to answer the two related research questions 

“how well the home assignments that the students do during the course prepare them for the course-

final exam” and “how predictable the result of the grammar exam is”. The study uses correlation 

analysis to answer the first question, and multiple linear regression and polynomial regression to 

answer the second question (Urdan 2012; Hartshorn 2017). The pursuit of the second question has 

been inspired by Elbro and Scarborough (2003). This section explains why these technics have been 



The learning curve  Globe, 11 (2020) 

44 

selected, Section Data describes the data used in detail, and Section Method explains how the data 

were manipulated in the analysis. A good understanding of the nature of the data is necessary for the 

understanding of the data manipulation employed. 

 

2.1 Correlation analysis 

The correlation analysis is used to determine the level of correspondence between the results of the 

home assignments during the course and the exam results, with a high level of correlation suggesting 

that the assignments prepare the students well for the exam. The hypothesis is the following: If the 

students become prepared for the exam during the grammar course, then the level of correlation is 

low at the beginning of the course, is increasing towards the end of the course and reaches a high 

level for the exam. Low correlation at the beginning corresponds to the relatively low level of 

knowledge the students enter the university with. Increasing correlation indicates the rising level of 

knowledge of the students, and a high final level of correlation indicates that the course has prepared 

the students well for the exam. Should the correlation show a decreasing tendency during the course, 

it would indicate that the course is detrimental for the students’ development. Low final correlation 

and/or non-increasing level of correlation would suggest that the students do not gain much from 

doing the exercises with respect to the exam. 

 Note that the level of correlation and its tendency during the course are not indicative of the 

students’ level of knowledge, only of how well the assignments’ results tally with the exam’s results. 

The level of knowledge at any stage is only indicated by the results of the exam and the home 

assignments, respectively. Thus, in principle, the students can attain a high level of knowledge even 

without a significant level of correlation between the home assignments and the exam, and, similarly, 

a high level of correlation may be accompanied by a low level of knowledge. 

2.2 Regression analysis 

The purpose of the regression analyses is to devise an equation, a mathematical formula, that can be 

used to compute the expected score at the exam of a future student. This formula takes a student’s 

scores in the home assignments and the course-initial test as input and outputs the score that the 

student is likely to achieve at the exam. The result of this calculation can then reveal whether the 

student is in danger of failing, in which case evasive actions can be taken in time, before attempting 

the exam. Since this study attempts to predict only one value, the aggregate score of the exam, 

regression analysis suffices. Were the purpose to predict several values, for example subscores of the 

exam (cf. Section Data), multivariate analysis would be called for (Hair et al. 2010). 

 Of the several different ways of building such an equation, two kinds of regression analyses 

have been performed, multiple linear and polynomial (Boundless 2014). Since they both have 

advantages and disadvantages, one of the purposes of this study is to evaluate which one merits future 

use or further study. 

 The multiple linear regression analysis takes a sample group of students’ scores in the home 

assignments and the course-initial test as the independent variables and the scores in the exam of the 

same group of students as the dependent variable and builds an equation that relates the dependent 

variable to the independent ones. This equation can then be used to predict the expected score at the 

exam of a student who is not a member of the sample group. 

 This is the cornerstone of this kind of analysis; the equation is deployed on students whose 

data were not used in the development of the equation. Hence, the success of the equation in 

predicting a student’s exam scores depends heavily on how similar the student behaves compared to 

the sample group. The more dissimilar they are, the more imprecise the prediction becomes. In fact, 

the reliability of the equation also depends on the homogeneity of the sample group. The more 

heterogeneous the sample is, the less reliable the equation becomes. This dependence on similarity is 

a disadvantage of this method. However, it can be countered by the possibility that the input data can 
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be readily modified in a multitude of ways in order to fine-tune the equation. In fact, the multiple 

linear regression analysis has been performed on the same set of initial data modified in six different 

ways in order to find the data manipulation best suited. 

 The polynomial regression analysis has the advantage that it does not require a sample group 

of students. Hence, the equation is developed on the data of the very same student whose future exam 

score it is supposed to predict. In this way, a unique equation is developed for every student whose 

exam score is to be predicted – as opposed to the one-size-fits-all approach of the multiple linear 

regression analysis. The disadvantage of this method is that it depends on the consistent performance 

of the student for whom the equation is developed. If he or she does not perform in a mathematically 

detectable consistent pattern during the course, the equation gained is likely to mispredict the exam 

result of the student. 

3. Data 

As mentioned in Section Inferential statistics, the data for the analyses are the students’ scores from 

the course-final exam, from the three compulsory home assignments during the course and from an 

extracurricular course-initial test that was used to gauge the students’ knowledge of grammar upon 

entering the university. 

 The exam the students have to take in grammar at the end of their first semester consists of 95 

questions on 12 topics within theoretical grammar1. An additional five questions concern the use of 

comma in certain sentences; however, these five questions were taken out of the dataset. The students 

are given 120 minutes to answer the 100 questions and are not allowed to use any means of aid. 

Consequently, they have to memorize all the relevant technical terms and their applicability. 

 The three compulsory home assignments during the course also contain 100 questions each 

and have to be done within one week with intervals of two weeks. The students are allowed to use 

any means of aid except human help. Possible plagiarism is actively checked and punished when 

proven beyond reasonable doubt. The course-initial test, containing 24 questions, has to be completed 

within 20 minutes without any aid. All the questions in the home assignments and the course-initial 

test are from previous exams with occasional minor modifications. 

 Table 1 gives an overview of the topics of grammar discussed during the first semester and 

how they are weighted in the course-initial test, the home assignments and the exam2. 

Table 1: Overview of the grammar topics taught and examined 

Number of questions in 

Topics 

Course-

initial test 

Home 

assignment 1 

Home 

assignment 2 

Home 

assignment 3 

Exam 

A. Parts of speech 9 40  10 10 

B. Semantic relations   8 3 5 

D. Clause constituents 15 10 25 20 18 

E. Phrase vs. 

subordinate clause 

  15 10 8 

F. Phrase types   15 10 10 

G. Phrase constituents   12 10 9 

                                                 
1 This description applies only to the grammar exam in English. The German and Spanish groups of International Business 

Communication in Aalborg follow a different approach. 
2 The reason for the gaps in the alphabetical codes of the topics is that the topics which are coded with the letters C, M, 

N, O, U, V, W, X and Y had either been deprecated before this investigation was performed or are only discussed and 

evaluated in the second semester and are thus out of the scope of this paper. L and Z were removed from the analysis 

(see Section 4 for explanation). 
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Number of questions in 

Topics 

Course-

initial test 

Home 

assignment 1 

Home 

assignment 2 

Home 

assignment 3 

Exam 

H. Pronoun types  10  10 10 

I. Subordinate clause 

types 

   7 7 

J. Verb finiteness  15 7 7 7 

K. Number of matrix 

clauses in a paragraph 

   5 5 

L. Comma with relative 

clauses 

   (5)  

P. Number of affixes in 

a word 

 10    

Q. Part of speech of a 

word’s root 

 10    

R. Function of a 

morpheme 

 5 8  3 

S. Number of 

constituents in a phrase 

  10   

T. Dictionary form of a 

word’s root 

   3 3 

Z. Comma     (5) 

 

As can be seen in Table 1, only home assignment 3 is almost like the exam; the other assignments 

and especially the course-initial test deviate from the exam’s structure considerably. However, all the 

assignments and the test consist of questions from exams in previous years. The reason for the 

structural variation is many-fold and explained below. 

 The course-initial test contains questions only on parts of speech (A) and clause constituents 

(D) because these are the only topics that can be expected to be known by all students emerging from 

secondary education in Denmark. Some students might have been introduced to more sophisticated 

grammar in high school; however, since such students make up a small minority, it would not have 

made sense to waste precious time on questions that most students would not have had a chance to 

answer. 

 Since most of the grammar topics are hence completely new to the students, and since 

according to the study regulation, all the home assignments must be submitted during the course, it 

is not possible to train all the topics in all the home assignments. Some topics (for example I) must 

wait until the end of the course to be discussed and can thus be included only in the final home 

assignment. 

 The reason for the high proportion of questions in home assignment 1 on parts of speech (A 

& Q) is partly that it is one of the topics that students are already familiar with and that this topic was 

found to be one of the most essential topics in theoretical grammar (Madsen 2015). A similar 

argument applies to the large number of questions in home assignment 2 on clause constituents (D). 

The reason for the relatively many questions on finiteness (J) in home assignment 1 is that this topic 

had been believed to be particularly difficult for the students. However, a later examination found it 

to be a topic in which the students consistently performed above the overall average (Madsen 2017). 

Despite their not appearing in further home assignments or in the exam, topics P, Q and S were used 

to give the students another perspective on morphological and phrase analysis, which are two realms 

of grammar completely new to the students. Apart from these pedagogical considerations, it was 

attempted to allot the various topics roughly equal representation in the home assignments and the 
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exam. 

  

Table 2 provides some examples of the questions posed within the different topics. 

 

Table 2: Examples of questions in the exam, home assignments and course-initial test 

A. Determine which part of speech the underlined words belong to. 

• If you want to drink a healthy alcoholic beverage, cider is a very good choice. 

B. Determine the semantic relation between the expressions below. 

• -er as in happier vs -er as in Londoner 

D. Determine what clause constituents the underlined sequences of words are. 

•  True cider is made from fermented apple juice. 

E. Decide whether the underlined sequences of words are phrases or clauses. 

•  The wide availability of apples makes it easy to produce cider almost anywhere. 

G. Determine what phrase constituent the underlined sequences of words are. 

•  the alcoholic content of cider 

H. Determine what kind of pronoun the underlined words are. 

•  Whoever invented cider was a genius. 

I&J. Determine the type and finiteness of the underlined subclauses. 

• It seems that some drinks marketed as cider are not true ciders. 

T. Specify the dictionary form of the roots of the words below. 

• Unhealthily 

 

With the exception of question type T, the students have to select the correct answer from fixed sets 

of valid answers. For instance, in the case of D, the set of valid answers is the set of clause 

constituents, containing nine elements in this grammar course (Hjulmand & Schwartz 2012). Should 

a student give a true but invalid response, say calling from fermented apple juice a preposition phrase 

instead of adverbial constituent, the response counts as incorrect. The sets of valid responses are not 

listed in the exam; the students are expected to remember them. It does happen, however, that some 

students provide invalid responses. In question type T, there is no fixed set of valid responses, and 

the students are not given any hints as to what the root might be except for the word itself. 

 Each correct and valid response yields one point for the student. Incorrect and non-existent 

responses yield zero points. The students have to answer 60% of the questions correctly in order to 

pass the exam. The course-initial test and the home assignments are not graded. Nevertheless, the 

students have to make all the home assignments to be allowed to attempt the exam although the results 

of the home assignments do not matter. 

4. Method 

This section gives a detailed description of the setup of the regression analyses. The correlation 

analysis was done in a straightforward manner, not requiring a lengthy elaboration, and is summarized 

in the last subsection. All the calculations were performed in MS Excel (Bovey et al. 2009; Falls 
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2011; Carlberg 2014; Harmon 2014). 

 As mentioned in Section Inferential statistics, the students’ scores at the course-final exam 

serve as the dependent variable, and their scores in the course-initial test and in the three home 

assignments serve as the independent variables in the multiple linear regression analysis. The scores 

of freshmen in 2014 (60 students) and 2015 (79 students) were used in this study. 

 The years 2014 and 2015 were used because the students in these years were given exactly 

the same course-initial test and home assignments. The exam questions were of course different 

token-wise in the two years, but the same type-wise. This setup ascertains the best possible way to 

test the equations’ predictive power. However, the equations gained in this way require for maximum 

dependability that they be used on the scores of the same home assignments in the future that they 

have been developed on. 

 The five questions on comma in the exam were disregarded in the analysis because, due to a 

human error, they were rendered unusable in the 2015 exam. Thus, that exam featured only 95 

questions. For the sake of comparability, the results of the 2014 exam were adjusted so as to ignore 

the questions on comma. Similarly, question type L was taken out from the results of the third home 

assignments in both years. This has to be taken into account when attempting to predict a student’s 

exam result. The equations developed will not make a prediction with regard to questions on comma 

use. However, since this paper focuses on the learning of theoretical grammar, it is arguably not a 

major loss that comma use has been ignored. 

4.1 Multiple linear regression 

The multiple linear regression analysis, i.e. the development of the equation to predict the exam score, 

was done separately for the two years, and then the equations were checked against each other’s 

samples in order to test their predictive power. In other words, the equation developed for the students 

in 2014 was checked against the exam scores of the students in 2015, and the equation developed for 

the students in 2015 was checked against the exam scores of the students in 2014. 

 As mentioned in Section Inferential statistics, different manipulations of the raw data were 

performed before doing the regression analysis. Thus, two times four pairs of predictive equations 

were developed, four pairs for either year because four different sets of input data were used. One 

member of each pair takes into account the course-initial test, and the other member of the pair does 

not. The reason for this was that the course-initial test was extracurricular, so it cannot be expected 

that future courses – possibly taught by other teachers – will employ it. On the other hand, the three 

home assignments were compulsory and can be expected to remain so. Having one equation that 

considers the course-initial test and another equation that does not also makes it possible to estimate 

how much the students’ initial level of knowledge means for their achievement in the grammar course. 

 In the following, the four different input data sets are described. The simplest of the multiple 

linear regression calculations is based on the aggregated scores of the home assignments and the 

course-initial test, i.e. on the number of correct answers in each. Thus, these calculations take three 

or four factors into account (without and with the course-initial test, respectively). In the other three 

types of multiple linear regression calculation, the scores of the individual topics are taken separately 

as factors. Hence, these calculations operate on 27 and 25 factors depending on whether the course-

initial test is or is not taken into consideration. 

 The reason for trying this more complex approach is that the aggregate scores do not reveal 

anything about the composition of the students’ knowledge. Two students can have the same 

aggregate score, but they have likely answered different questions correctly, and their knowledge may 

thus have different compositions. Different knowledge compositions may have different bearings on 

the exam scores.  
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Table 3 summarizes the datasets for the multiple linear regression analysis. 

 

 

Table 3: Datasets used in the study 

aggregate scores of home 

assignments and course-initial test 

scores of the individual topics within the home 

assignments and course-initial test 

nominal scores 
differentiated scores 

ordinal proportional 

 

The simplest one of the three more detailed calculations (called nominal scores) takes the scores for 

the individual grammar topics at their face value, i.e. simply the number of correct answers. The other 

two approaches attempt to differentiate between the responses depending on the difficulty of the 

questions. The idea behind this is that the questions within the same topic are inevitably at different 

levels of difficulty, be it accidentally or purposefully. Hence, even if two students have answered the 

same number of questions correctly, they may have knowledge of different levels or of different 

composition within the grammar topic concerned. This difference may in turn have a bearing on the 

final score at the exam. 

 The level of difficulty of the questions is estimated from the number of correct responses given 

to the individual questions by the members of the sample group (Hatch and Farhady 1982). Thus, the 

measure of difficulty is dependent on the composition of the sample group on whose scores the 

equation is being built and may differ from group to group. However, since the difficulty of questions 

can be validly measured only by the performance of those who have actually answered the questions, 

there is no reliable independent external measure of difficulty. The only way to mitigate the effect of 

the possible difference between sample groups is to measure the questions’ difficulty on the 

performance of one very large group of informants and use this measurement in all subsequent 

calculations. However, since this study is the first of its kind – at least for the students of English 

Business Communication – this pre-assessment of question difficulty was not possible. 

           Another beneficial effect of this differentiation is that the granularity of the scores increases, 

i.e. the same number of questions can differentiate between more students. Without the 

differentiation, the undifferentiated aggregate score of say five questions can only differentiate 

between six students because there are only six different scores: 0, 1, 2, 3, 4, 5. With a differentiating 

algorithm, this number can be increased to 20. The algorithm is explained in detail in Madsen 2019 

and therefore only summarized here briefly. 

 Two methods of differentiation are used in this study as well. In one of them, an integer value 

from 1 through the number of questions within the topic (n) is assigned to each question depending 

on the detected level of difficulty. 1 indicates the lowest level of difficulty, and n the highest, the level 

of difficulty being inversely proportional to the number of informants having answered that question 

correctly. If two questions appear to have the same level of difficulty, then they are assigned the same 

value. This method is referred to as ‘ordinal’ in Table 3. 

 The other method of differentiating is called ‘proportional’ in Table 3 and works in the same 

way except for the fact that the level of difficulty is not expressed by integer, but by rational numbers. 

In this way, the calculation takes into account not only the rank order of the questions on the scale of 

difficulty, but also the proportion of how difficult they are compared to one another within the same 

topic. The rationale is that the difficulty of the questions is not necessarily equally distributed. For 

instance, the second easiest question may be as many as five times more difficult than the easiest 

question while the third easiest question only slightly more difficult than the second easiest one. Also 
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in the proportional method, the easiest question is assigned the value of 1, and the most difficult 

question the value n. All the other questions are assigned values between 1 and n in proportion to 

their measured difficulty. 

 For the sake of comparability with the aggregate and nominal scores (Table 3), the 

differentiated scores are scaled to the same ranges as those of the nominal scores. That is, if a topic 

is probed by 10 questions, then the maximum number of points attainable is 10 regardless of the 

calculation method. The differentiated scores just have a higher resolution of the same range than the 

nominal scores. 

4.2 Polynomial regression 

The idea of attempting a polynomial regression analysis comes from the observation (Figure 1) that 

when plotting in a coordinate system the sample means for the course-initial test and the home 

assignments in chronological order, the points resemble the curve of a 3rd degree polynomial (the 

curve is continuous for illustrative purposes only). Hence, this idea takes the title of this paper literally 

and attempts to fit a curve onto the data points. The equation that describes the curve can then be used 

to predict the score at the exam, which is the next data point in the curve. 

 

Figure 1: 3rd degree polynomial of average scores. 1 on the x axis represents the course-initial test, 

and 2 through 4 the home assignments. 

 

Admittedly, this is a rather dubious approach. Even though four points technically define a 3rd degree 

polynomial, it is not at all clear what the independent variable on the x-axis represents. The best bet 

is probably time; however, even so, it is not given what values it should assume. If the course-initial 

test and the home assignments are assigned the x-values of 1 through 4, should the exam be 

represented by 5? It was in the test calculations because given the nature of the cubic polynomial, any 

higher value would likely overshoot the target with a very large margin. However, it was an arbitrary 

choice, which in fact does not resonate well with the assumption that the independent variable should 

be time. For assuming the values of 1 through 5 suggests that the measurement points are equidistant 

in time. It does apply to the home assignments because they were spaced two weeks from the course-

initial test and each other. However, the exam took place about one month after the last home 

assignment, which suggests that the x-value for the exam ought to be 6. A similar doubt concerns the 

dependent variable on the y-axis. Its values are seemingly given – the above mentioned scores; 

however, these values derive from different sources and only vaguely measure the same thing, the 
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student’s level of knowledge. 

 Despite all these grave reservations, a 3rd degree polynomial was considered worth pursuing, 

possibly even as a better choice than 1st degree polynomial, i.e. a linear approximation. The reason 

why a 1st degree polynomial was considered possibly inferior is that most students showed a generally 

increasing tendency from the course-initial test to the third home assignment, and a linear 

approximation would necessarily carry this tendency further. However, not all students’ exam results 

warrant this assumption. Therefore, it was expected that a 1st degree polynomial would have a strong 

tendency to overestimate the exam result, which is clearly undesirable. 

 In any case, both 1st and 3rd degree polynomials were tried, and both in two different ways. In 

one of the approaches, the starting point (the first data point) for the polynomial was the score of the 

course-initial test. In the other approach, the starting point was set at the origin, in a way modelling 

the absolute starting point of the students having zero knowledge of grammar. As opposed to the 

multiple linear regressions, the 3rd degree polynomials do not have different versions according to 

whether the course-initial test is included or not. Since a 3rd degree polynomial needs at least four 

data points, it would make no sense to disregard the course-initial test. Adding the origin as an extra 

starting point is only an artificial data point. 

 The polynomials’ average performance was evaluated against the combined sample of the two 

years. Since each informant individually serves as the basis for a set of four polynomials, there is no 

point in comparing the years against each other. However, a larger sample can give a more reliable 

picture of the average performance of the polynomials. 

4.3 Correlation analysis 

The aggregate exam scores of the students were correlated with the aggregate scores in the home 

assignments and the course-initial test, one pair of datasets at a time. The two years were combined 

in the correlation analysis to increase the sample size. The significance of the correlations was 

calculated by using the two-tailed pairwise t-test. The correlation analysis is augmented by a 

calculation of the difference between the average of the exam scores and the averages of the exercise 

scores. 

 

5. Analysis 

The first two sections report the results of the multiple linear regression analysis and the results of 

the polynomial regression analysis, respectively. These results are evaluated according to the 

following metrics. The results of the correlation analysis are presented separately. 

 

 x̅E = mean of the expected scores. It is the arithmetic mean of the exam scores that are pre-

dicted by the equation developed by the regression analysis. It should be as close to the mean 

of the observed scores as possible. 

 rEO = correlation coefficient between the observed (or target) scores and the expected (or cal-

culated) scores. It goes from -1 through +1. The closer it is to +1, the better it is from the 

perspective of this study. Values closer to 0 indicate weaker correlation. Negative values 

would indicate inverse correlation between the observed and expected scores, which would 

be catastrophic for the purpose of this study. 

 p = probability of equality as calculated by the two-tailed pairwise t-test. It can assume values 

between 0 and 1, and higher values indicate higher probability that the observed scores and 

the expected scores represent the same population. Note that this study tests whether two 

samples are the same. Therefore, a higher value of p is preferred since p indicates how likely 

it is that the two sets of scores are equivalent. Hence, this approach differs from the one used 
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in many studies that test whether two samples are different from each other in order to deter-

mine, for instance, whether two different teaching methods or medications yield different re-

sults. Such studies, therefore, seek a low value of p, typically one below 0.05 (Hartshorn 

2015). 

 x̅D = mean of the differences between the observed and calculated scores. For each student, 

the difference between their observed exam score and predicted exam score is calculated, and 

x̅D is the average of these differences. Consequently, it is also the difference between the av-

erage of the observed exam scores and the average of the expected exam scores. The closer it 

is to zero, the better. Positive values indicate that the equation generally overestimates the 

expected scores, and negative values indicate underestimation. Negative values are preferred 

to positive ones because it is probably better to urge a student who is not in danger of failing 

the exam to do even better than to miss a student who is in danger of failing. 

 sD = standard deviation of the differences between the observed and expected scores. The 

lower it is, the better it is because that indicates lower variability in the predictions. 

 minD = the lowest value of the differences between the observed and expected scores. It is the 

longest distance between an underestimated score and the actual score. The closer it is to zero, 

the better. 

 maxD = the highest value of the differences between the observed and expected scores. It is 

the longest distance between an overestimated score and the actual score. The closer it is to 

zero, the better. 

 madD = the mean absolute deviation of the differences between the observed and expected 

scores. It is measured from x̅D. The lower it is, the better it is for the same reason as with the 

standard deviation. 

 <sD = the number of expected scores that are within a distance of one standard deviation from 

x̅D. If the distribution of the difference is normal, it should amount to about 68% of the number 

of informants. In any case, the higher it is, the better it is because it indicates that more pre-

dictions are closer to their target. 

 >2sD = the number of expected scores that are further from x̅D than two standard deviations. 

If the distribution of the difference is normal, it should amount to about 5% of the number of 

informants. In any case, the lower it is, the better it is because missing the target by more than 

two standard deviations indicates an all too low predictive power of the equations. 

 <±3 = the number of expected scores that are within 3 percent points of their targets. 3 percent 

points has been chosen as the limit because the average interval of the grades is 6 percent 

points. Hence, 3 percent points is the largest deviation which, at the same time, is the least 

likely one to cause a target miss which amounts to a change in grade. The higher, the better. 

 

For the datasets, the following abbreviations are used. 

 

 Aggr. is the dataset consisting of the aggregate scores of the course-initial test and the home 

assignments. 

 Plain is the dataset that consists of the plain scores of the individual grammar topics. 

 Ord. is the dataset that consists of the scores of the individual grammar topics which are dif-

ferentiated on an ordinal scale. 

Prop. is the dataset that consists of the scores of the individual grammar topics which are 

differentiated on a proportional or interval scale, cf.  
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 Table 3. 

 

5.1 Multiple linear regression 

The tables below summarize the results of the multiple linear regression analysis. First, the equations 

were checked against their own samples in order to see how they perform under the most optimal 

circumstances (Table 4 and Table 5). Then, their performance was checked against the other sample, 

which was the very purpose of this study (Table 6 and Table 7). The most favorable value of a given 

metric is highlighted in each column. The favorable values do not necessarily coincide. Hence, 

selecting the best performing equation is not a trivial matter. The <±3 values are of course weighted 

high because they express how many predictions come within the preferred range around the target. 

However, the spread of the predictions is also very important since it is desirable that the predictions 

do not miss their target by too large a margin. 

 

Table 4: Equations for Year 2014 checked against Year 2014 
mean of observed scores = 70.39, number of informants = 60 

dataset initial test x̅E rEO p x̅D sD minD maxD madD <sD >2sD <±3 

aggr. 
incl. 70.47 0.76 0.94 0.08 8.58 -16.56 23.16 6.66 73% 5% 33% 

excl. 70.52 0.75 0.91 0.13 8.75 -16.08 24.20 6.72 72% 7% 30% 

plain 
incl. 70.44 0.89 0.95 0.05 6.02 -11.81 18.48 4.81 68% 3% 40% 

excl. 70.43 0.89 0.95 0.05 6.07 -11.16 18.77 4.83 70% 3% 38% 

ord. 
incl. 70.40 0.88 0.99 0.01 6.32 -13.25 17.25 4.91 72% 7% 37% 

excl. 70.40 0.87 0.98 0.02 6.54 -12.38 18.32 5.02 75% 5% 37% 

prop. 
incl. 70.36 0.88 0.98 -0.03 6.38 -12.92 16.91 4.87 65% 7% 42% 

excl. 70.38 0.87 0.99 -0.01 6.60 -12.76 17.81 4.94 72% 5% 43% 

 

Table 5: Equations for Year 2015 checked against Year 2015 
mean of observed scores = 64.50, number of informants = 79 

dataset initial test x̅E rEO p x̅D sD minD maxD madD <sD >2sD <±3 

aggr. 
incl. 64.59 0.85 0.93 0.08 8.77 -23.25 23.06 6.55 73% 8% 34% 

excl. 64.55 0.81 0.96 0.05 9.72 -28.11 22.85 7.71 78% 9% 24% 

plain 
incl. 64.45 0.92 0.95 -0.05 6.61 -15.60 15.23 5.33 66% 5% 32% 

excl. 64.45 0.91 0.95 -0.06 7.08 -16.97 13.87 5.83 66% 3% 27% 

ord. 
incl. 64.37 0.91 0.86 -0.14 6.91 -17.59 17.87 5.49 71% 4% 34% 

excl. 64.36 0.90 0.86 -0.15 7.34 -21.97 17.33 5.75 68% 4% 33% 

prop. 
incl. 64.30 0.90 0.80 -0.21 7.28 -16.99 16.24 5.80 72% 8% 33% 

excl. 64.27 0.89 0.79 -0.23 7.76 -20.96 16.55 6.08 67% 5% 33% 

 

Looking at the results of the “self-test” of the equations, it is evident that the equations gained from 

the regressions based on the individual grammar topics are superior to the ones which are gained from 
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the regression based on the aggregate scores. It is also clear that the equations that also take the 

course-initial test into account tend to perform better than the corresponding ones without the course-

initial test. On the other hand, it does not seem to pay off to invest the extra computational effort into 

the differentiation of the questions within the grammar topics, although it is not detrimental either. 

 The distribution of the differences is close to normal distribution. The <sD values are around 

68%, and the >2sD values do not typically exceed 5%. The <±3 values are around 33%, which is 

somewhat mediocre. 

 

 

Table 6: Equations for Year 2015 checked against Year 2014 
mean of observed scores = 70.39, number of informants = 60 

dataset initial 

test 

x̅E rEO p x̅D sD minD maxD madD <sD >2sD <±3 

aggr. 
incl. 67.67 0.72 0.03 -2.72 9.36 -24.74 21.79 7.03 72% 7% 28% 

excl. 67.45 0.70 0.02 -2.94 9.48 -24.93 27.22 7.06 67% 8% 23% 

plain 
incl. 67.81 0.61 0.10 -2.57 11.67 -33.54 28.24 9.29 67% 5% 20% 

excl. 67.85 0.57 0.12 -2.54 12.24 -35.13 28.19 9.45 73% 7% 17% 

ord. 
incl. 69.27 0.57 0.51 -1.11 12.88 -35.97 29.98 10.08 67% 5% 22% 

excl. 69.48 0.51 0.62 -0.90 14.03 -39.78 36.23 10.91 68% 5% 18% 

prop. 
incl. 69.57 0.59 0.63 -0.82 12.95 -36.06 32.90 10.44 67% 3% 12% 

excl. 69.81 0.52 0.76 -0.57 14.28 -40.03 41.50 11.18 72% 3% 15% 

 

Table 7: Equations for Year 2014 checked against Year 2015 
mean of observed scores = 64.50, number of informants = 79 

dataset initial test x̅E rEO p x̅D sD minD maxD madD <sD >2sD <±3 

aggr. 
incl. 67.71 0.82 0.01 3.21 9.62 -18.55 31.74 7.45 76% 8% 32% 

excl. 67.79 0.79 0.01 3.28 10.30 -20.20 31.46 8.11 71% 6% 29% 

plain 
incl. 65.05 0.70 0.69 0.54 12.12 -43.27 30.27 9.01 75% 5% 24% 

excl. 65.27 0.72 0.57 0.77 11.77 -41.52 30.35 8.77 72% 5% 32% 

ord. 
incl. 65.34 0.65 0.58 0.84 13.21 -37.35 36.93 9.93 68% 5% 24% 

excl. 65.96 0.72 0.28 1.45 11.87 -35.75 33.93 8.86 68% 4% 29% 

prop. 
incl. 67.31 0.66 0.07 2.81 13.36 -36.52 38.82 9.97 71% 6% 30% 

excl. 67.92 0.72 0.01 3.42 12.11 -34.96 35.69 9.04 70% 5% 23% 

 

Several differences emerge from Table 6 and Table 7. First, the correlations in the case of controlling 

the equations against the group of informants from the other year are much lower than the ones gained 

when checking the equations against the year for which they were developed. This is also reflected 

in the much lower level of statistical significance and the higher values of the difference between the 
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expected and observed scores. Nevertheless, in most cases the correlations still reach an acceptable 

level of around 0.7.  

 Second, excluding the course-initial test does not make so large a difference between the 

members of the equation pairs as when evaluating the equations against their own year. In several 

cases, the equations without the course-initial test are in fact more precise than the ones incorporating 

it. 

 Last, the equations based on the individual grammar topics are not in any obvious way 

superior to the equations based on the aggregate scores as they are when being checked against their 

own years. Also, the patterns of the equations from the two years are quite different from each other. 

The equations from 2014 seem to agree better with the informants from 2015 than vice versa. 

However, the distribution of the differences is still close to normal. 

 As it turns out, the two samples are indeed different from each other. The p value from a t-test 

comparing the exam scores from the two years equals 0.0228, which suggests that the two samples 

are statistically significantly different from each other. It explains why the results in Table 6 and Table 

7 are so different. Since the 2014 equations do better on their own sample than the 2015 equation on 

theirs, it is probably not surprising that this difference also emerges in a cross-sample comparison. It 

has likely to do with the fact the sample from 2014 is more homogenous than the sample from 2015 

as their standard deviations are consistently lower (Table 8). 

Table 8: Standard deviations of the samples 

 course-initial test home assignment 1 home assignment 2 home assignment 3 exam 

2014 18.10 9.06 12.96 12.37 13.35 

2015 18.82 11.24 14.04 15.16 16.76 

 

It is, however, not a disadvantage that the two samples have proved to be so different because it hints 

at what can be expected when an equation based on one sample is used on another sample that is 

rather different from the former sample. If the results in Table 6 and Table 7 can be deemed 

satisfactory enough, then there is a good chance that the equations developed in this project can be 

used on further samples with some confidence. 

 As for the satisfactoriness of the predictions, it must be noted that even though x̅D is a 

magnitude larger in the cross-checking than when the equations are compared against their own 

sample, it can still be as low as 0.54. Even a value of -2.57 (Table 6) is an acceptable prediction. 

Despite the significant increase in x̅D, the number of predictions within the ±3-percent-point margin 

is still in the range of 20 to 30%. Thus, the equations seem to be reasonable tools to detect students 

that may be lagging behind. 

5.2 Polynomial regression 

 

Table 9 shows the results of the polynomial regression analysis. 

 

Table 9: Results of the polynomial regressions 
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mean of observed scores = 67.05, number of informants = 139 

polyn-

omial 

forced 

throug

h 

origin 

x̅E rEO P x̅D sD minD maxD madD <sD >2sD <±3 

3rd degree yes 91.34 0.51 0.00 24.29 45.67 -106.64 154.46 36.38 62% 7% 6% 

no 149.22 0.01 0.00 82.17 58.38 -75.20 254.70 44.80 35% 24% 0% 

1st 

degr

ee 

with 

test 

yes 96.38 0.75 0.00 29.33 11.56 -7.14 68.74 8.87 6% 71% 1% 

no 76.58 0.57 0.00 9.54 15.06 -29.50 61.60 11.98 62% 9% 15% 

w/o 

test 

no 63.75 0.67 0.00 -3.30 14.22 -42.07 45.93 10.40 77% 6% 20% 

 

Somewhat disappointingly, though not entirely unexpectedly, the 3rd degree polynomials did not 

fulfill the expectations, performing rather poorly. Many predictions missed the target by a very large 

margin even exceeding the absolute limits of 0 and 100. The polynomials could possibly perform 

better if there were more data points, i.e. the scores from more exercises during the course, to build 

on; however, that is not possible for the time being. 

 On second thought, it is not so surprising that the first degree polynomials did better than the 

3rd degree ones despite the agreeable curve in Figure 1. When having so few data points, it is likely 

that a linear approximation does a better job than a higher order one. This might, however, change if 

there were more data points, as alluded to above. The 1st degree polynomial (last row in Table 9) 

which was not pegged to the origin and which did not take the course-initial test into account did in 

fact quite well, almost on par with the equations from the multiple linear regression analyses. When 

considering that the 1st degree polynomial has the advantage that it does not need a sample base and 

has minimal computational requirements, it is not an unattractive alternative to multiple linear 

regression despite its somewhat lower precision. 

5.3 Correlation analysis 

Figure 2 shows the results of the correlation analysis. 

 

 r stands for the correlation coefficient between the exam scores and the respective exercise. 

 p is the statistical significance of the correlations. 

 Δx̅ is the difference between the average of the exam scores and the average of the scores of 

the respective exercise. The former is subtracted from the latter. It has been scaled down by 

100 so that it can be shown on the same scale as r and p. 

 

The calculations are based on the combined sample of 2014 and 2015, which comprises 139 

informants. The average exam score of the combined sample is 67.05. 

 

Figure 2: Results of the correlation analysis 
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As can be seen, the correlation with the exam increases steadily during the course. So does the 

probability of equality (p) between the exam scores and the scores of the respective exercises although 

it does not reach high. On the other hand, the gap between the exam scores and the scores of the 

exercises shows a steady decrease, though with fluctuation in its sign. 

  All these metrics suggest that the students are being prepared for the exam during the course, 

at least partly by the exercises they do. The calculations also suggest that the initial level of knowledge 

is not decisive for the exam score, and students with a low initial level can improve their knowledge 

sufficiently. This observation is also corroborated by the results of regression analyses. When the 

equations from the multiple linear regression analysis are cross-checked against the other sample, the 

equations incorporating the course-initial test do not perform noticeably better. It suggests that the 

results of the course-initial test are not good predictors of the exam scores. This suggestion is further 

strengthened by the 1st degree polynomials performing best when the course-initial test is not taken 

into account. 

 However, it does not mean that the course-initial test was taken in vain. It may have given a 

hint to the students about their standing and may have given them some motivation to make more 

effort, especially those who did not do well at the test. 

6. Conclusion 

The paper sought to answer two research questions. As for the question how well the home 

assignments prepare the students for the course-final exam, the study clearly shows that there is an 

increasing convergence between the students’ exercise results and their exam results. It suggests that 

the exercises during the course have a beneficial effect for preparing the students for the exam. Of 

course, it does not guarantee that the existing exercises are the best possible ones; however, they 

certainly serve their purpose. 

 For the question how predictable the outcome of the grammar exam is, the results are 

promising. In 20 to 30% of the cases, the predictions are spot on, and within ±2 grades in 60 to 70% 

of the cases. It means that the teacher can confidently identify and – most importantly – notify those 

students who are in danger of failing the exam in advance. Even though this identification is possible 

only after the final home assignment has been evaluated, there is still some time until the exam so 

that the students notified can make extra effort to prepare for the exam. 

 The comparison of the prediction methods indicates that it is not necessary to differentiate 

between the questions of the individual grammar topics for the sake of the prediction, nor does it pay 
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off to increase the granularity of the scores. The basic aggregate scores are sufficient. There is 

furthermore close competition between the predictive equations developed through multiple linear 

regression analysis and the 1st degree polynomial regression, suggesting that the simplest prediction 

methods work just fine. All this means that putting the findings of this paper to practical use is no 

more complicated than setting up a simple Excel spreadsheet in which the teacher inserts a student’s 

home-assignment scores and obtains the student’s expected exam score immediately. The teacher and 

the student can then take action accordingly. 

 Finally, the study has also given an answer to an unasked, yet important question. Both the 

correlation and regression analyses suggest that the students’ initial level of knowledge is not decisive 

for their exam score. In other words, also students with a limited understanding of grammar at the 

beginning of the course can learn it during the course; good exam grades are not reserved for the few 

who enter the university with substantial preunderstanding of grammar. This corresponds well with 

the conclusion that the home assignments support the students’ learning adequately. 
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