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Background: Every day, people must reason with uncertain information to make decisions that affect their lives and affect the 

performance of their jobs and organizations. Visualizations of data uncertainty can facilitate these decisions, but visualizations are often 

misunderstood or misused. Decision-making with uncertainty visualizations involves two major steps: 1) understanding the data from the 

visualization (extraction) and 2) preforming probabilistic reasoning to make decisions based on those data (inference). Previous research 

has demonstrated that deliberate practice with uncertainty visualizations can improve decision-making in abstract conditions, with 

performance gains even transferring to different visualization types (e.g., from ensemble to summary displays). This suggests that such 

practice may improve a person’s facility with the inference step. However, we must first exclude two other possibilities. First, we must 

establish that such practice does not simply improve a person’s ability to work with a specific display platform (e.g., static 2D vs. dynamic 

3D) or specific context (e.g., abstract vs. concrete), and we must furthermore establish that practice does not simply improve the 

implementation of some rule-of-thumb heuristic that yields tolerable performance only with simple datasets.  This study addresses whether 

the learning gains from abstract practice in one platform will transfer to more to concrete tasks on a different platform and with more 

complex data. 

Objective: Here, we test the degree to which practice integrating multiple sources of uncertain information with abstract 2D summary or 

ensemble displays improves performance on transfer tasks involving decision-making with uncertainty displays on a 3D virtual sand table 

(3D tabletop terrain map) and with more sources of uncertain information to integrate.  
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Method: We conducted an online study with 378 participants who completed an uncertainty integration task in a 3D virtual sand table 

(3D tabletop terrain map) with story context using either summary or ensemble displays of uncertainty at different levels of data 

complexity. Participants had previously practiced in abstract 2D with the same display type (summary or ensemble), the other display 

type, or received no opportunity to practice. We analyzed response accuracy and speed and how these changed throughout the task.  

Results: Results suggest that deliberate practice with abstract 2D uncertainty visualizations allows faster decision making in the new 

context and platform but does not improve accuracy. In the 3D task, the summary display generally yielded similar or better performance 

than the ensemble display. Learning gains from practice transferred to both same-type and different-type visualizations in the 3D platform 

and context, suggesting that practice in abstract 2D improved participants’ ability to reason with uncertainty data, not just their ability to 

extract the data from the display platform, particular context, or specific visualization type. The faster performance also transferred to the 

higher complexity condition, suggesting that practice improved reasoning beyond use of simple rules of thumb. 

Conclusions: The results suggest that practice with the abstract 2D task enhanced facility with the underlying probabilistic reasoning, 

which transferred to the new concrete, 3D, and more complex context, rather than just increasing visualization-specific understanding. 

This implies that deliberate practice can be a beneficial tool to improve reasoning with uncertainty, including across contexts, across 

visualization types, and across different levels of data complexity.  

Materials: Stimuli, stimulus software, anonymized data, and analysis scripts and related code are available online at https://osf.io/5xdsg/. 

CCS CONCEPTS • Human-centered computing~Visualization~Empirical studies in visualization • Human-centered 

computing~Visualization~Visualization theory, concepts and paradigms • Human-centered computing~Human computer 

interaction (HCI)~Interaction paradigms~Virtual reality 

Additional Keywords and Phrases: Uncertainty visualization, reasoning with uncertainty, training, deliberate practice 

1 INTRODUCTION 

People often need to make consequential decisions based on evidence and forecasts that are uncertain. This occurs in 

domains such as healthcare (Han et al., 2019), weather (Joslyn & LeClerc, 2012), and military intelligence (Dhami et al., 

2015). Increasingly, decisions need to be made based on multiple uncertain estimates (Padilla, Dryhurst, et al., 2021), but 

there has been limited past work examining how to communicate uncertain estimates in a way that supports optimal 

combination of the estimates (for exceptions, see Greis et al., 2018; Hegarty et al., 2016; Kusumastuti et al., 2022). What 

can be done to help people make decisions when they need to account for multiple uncertain estimates? 

Well-designed visualizations of uncertainty can help people make better decisions (Padilla et al., 2020), but uncertainty 

is often omitted in reports of estimates and forecasts, in part because of concern that people will misinterpret or mistrust 

information presented with uncertainty (Hullman, 2020). Instructions and other explanations of how to use visualized 

uncertainty can help (Boone et al., 2019; Fiore et al., 2019; Song et al., 2019), but instruction might be insufficient. People 

without specific education or training in understanding uncertainty (Joslyn & LeClerc, 2012), as well as those with 

extensive training (Belia et al., 2005), often misinterpret common forms of uncertainty communication. When multiple 

sources of information are combined, the complexity of the task grows exponentially, potentially exacerbating any 

misunderstandings and overwhelming the decision-maker. 

One promising line of research has aimed to help people make better use of visualizations of multiple, uncertain 

estimates in decision-making (Fernandes et al., 2018). In this work, decision-making performance improved over time 

when participants received immediate feedback after working with a variety of uncertainty communication techniques 

(Fernandes et al., 2018). Subsequent work showed that repeated practice paired with post-trial feedback improved 

https://osf.io/5xdsg/
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performance of both practiced and two un-practiced uncertainty visualizations (Kusumastuti et al., 2022). These 

observations fit in with the more general assessment that people might tend to make sub-optimal decisions when they have 

had no or limited opportunity to improve, but that probabilistic decision-making can improve notably when people receive 

feedback that lets them improve (Hertwig & Grüne-Yanoff, 2017; Lejarraga & Hertwig, 2021). 

A cognitively inspired account of decision-making from visualized data lays out several steps in making a decision, 

distinguishing between message assembly (i.e., extracting meaning from the graphic) and inference (i.e., answering a 

question leading to a decision or action) (Padilla et al., 2018). Past work has found that practice with one type of 

visualization (e.g., ensemble or summary type) improves performance with an un-practiced visualization type, at least for 

abstract, 2D data visualizations (Kusumastuti et al., 2022). This suggests that at least some of the practice-driven 

improvement is taking place in the inference phase. However, it is possible that the observed gains were not the result of 

improvements in probabilistic inference but rather in other skills agnostic to visualization type, such as increased facility 

with the display platform and abstract context. It may also be the case that the practice afforded not a true improvement in 

probabilistic reasoning per se but rather greater facility in implementing rule-of-thumb heuristics that were just good 

enough to yield passable performance with the fairly simple data estimates they were shown (Kusumastuti et al., 2022). 

Here, we seek to rule out these alternative explanations and push this transfer farther, to see if performance boosts from 

practice transfer to new contexts and display platforms as well as to a change in visualization type and change in data 

complexity. 

As the technological landscape evolves and increasingly offers alternative and enticing ways to display data, there is 

motivation in the training domain to understand how skills are obtained across different platforms and how they transfer 

from one type of platform to another. Platforms that utilize 3D displays are of particular interest and have been used to 

examine performance in terrain understanding (Smallman and Cook, 2010), representations in navigation (Pollard, 

Siriwardena, Krum, and Files, 2022; Liao, Dong, Peng, and Liu, 2016), surgical operations (Beattie, Hill, Horswill, Grove, 

and Stevenson, 2020; Ashraf, Collins, Whelan, O’Sullivan, and Balfe, 2015), weather forecasting (Hegarty, Smallman, 

Stull, and Canham, 2009), as well as many other situations. This popularity is due to 3D displays being perceived by users 

as more realistic (Hegarty, Smallman, Stull, and Canham, 2009), aesthetically appealing (Hegarty, Smallman, Stull, and 

Canham, 2009), and familiar with their respective field (Smallman and Cook, 2010). Notably, despite the rising interest in 

and preferred use of 3D environments, a number of studies have shown a decrease in performance rates, such as response 

time (Hegarty, Smallman, Stull, and Canham, 2009) and accuracy (Hegarty, Smallman, Stull, and Canham, 2009) when 

using 3D platforms as compared to the performance with their 2D counterparts. Nevertheless, there are still use cases in 

which 3D displays may be more beneficial than 2D displays. 3D displays have demonstrated their effectiveness in 

situations that involve shape understanding, in which users need to understand 3D spatial relationships (Ashraf, Collins, 

Whelan, O’Sullivan, and Balfe, 2015; Smallman and Cook, 2010), whereas situations that require relative positioning may 

be more effective for 2D displays (Smallman and Cook, 2010; Hegarty, Smallman, Stull, and Canham, 2009). This suggests 

that situations that require both 2D and 3D understanding may benefit from using both 2D and 3D platforms. Furthermore, 

as accessibility and distribution of hardware may differ across training sites, it is imperative to understand the extent to 

which skills learned from training transfer between 2D and 3D displays to ensure skill proficiency.   

To begin to answer this question, we examined whether practice with an abstract 2D uncertainty integration task resulted 

in better performance in a similar task within a novel context and different display platform: a 3D virtual sand table (3D 

tabletop terrain map) environment in which participants were asked to identify the best place on a virtual terrain 

representation to drop a supply package, given two or four independent estimates of the ideal location (with visualized 

uncertainty for each estimate).  
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This virtual environment context placed additional demands on the user, requiring them to carry out the uncertainty 

integration task while managing these other demands. The first additional demand was that participants needed to navigate 

3D space to get themselves into a position that afforded a preferred view of the task. The second additional demand was 

that the task was in the context of a 3D terrain. The verticality of the terrain was not directly relevant to the inference task, 

but it potentially distorted the visualized uncertainty and/or occluded some elements of the visualization. These additional 

demands combined to make a task with the same underlying probabilistic inference at its core as the 2D training task, but 

in a qualitatively different context.  

We also examined whether practice-derived performance improvements would extend to performance of a task with 

increased complexity: during practice, participants were shown either two or three independent estimates of some abstract 

two-dimensional location, but in the 3D task, participants had to integrate either two or four independent estimates. If 

practice in a two and three-estimate task were reinforcing some generalizable inference, then we would expect performance 

benefits to transfer to a four-estimate task. However, if the practice is reinforcing the use of heuristics (i.e., approximations 

using visualization-based stand-ins or shortcuts) that function reasonably well in lower complexity problems, the benefits 

of such practice might begin to break down under higher complexity. For example, increasing the number of estimates 

increases the probability that at least one estimate has an error that is in the tails of its probability distribution (i.e., has 

more extreme levels of uncertainty). This would challenge heuristics that only work when estimates are clustered at the 

bulk of their distributions. If practice in the two or three-estimate task reinforced low-dimensional or other non-

generalizable heuristics, then we would expect performance benefits to transfer to the virtual 3D task with two estimates 

(simple task) but not four estimates (complex task). 

If practice with a visualized uncertainty integration task improves the speed and fluency of the underlying inference, 

then practice with such a task should lead to improvements on another task with the same underlying inference, regardless 

of the nature of the visualization itself (its visualization type, platform, context, or complexity). If, however, practice only 

improves the speed and fluency of the process of converting a visual array into a set of abstracted messages (i.e., data 

extraction), then practice might not lead to better performance on a task that demands a different message-assembly 

process, due to a difference in visualization type, context/visualization platform, or data complexity. 

This leads us to the following hypotheses: 

Hypotheses: Allowing a person to practice uncertainty integrations from data visualizations (with feedback) improves 

their underlying ability to perform probabilistic inferences. This improvement in probabilistic reasoning might carry over 

to other visualization types (H1), other visualization platforms or contexts (H2), and to more complex data sets (H3). If 

this hypothesis is true, practice-derived improvement should transfer to different visualization and decision-making tasks 

that nonetheless require the same underlying probabilistic inference. We thus would expect practiced participants to 

perform better (greater speed and/or accuracy) on a transfer task as compared to un-practiced participants, even when the 

visualization type is different (H1), and the visualization platform and context is different (H2), and the level of data 

complexity is greater (H3). 

The alternative hypothesis (HA) is that practicing uncertainty integrations from data visualizations (with feedback) 

merely improves other underlying skills without also improving the ability to perform probabilistic inferences. If HA is 

true, we would expect that practice would not improve performance on other visualization types (HA1), and/or not on other 

visualization platforms/contexts (HA2), and/or not on more complex (more difficult) data sets (HA3). 

To test these hypotheses, we conducted an experiment in which two thirds of the participants were assigned to practice 

uncertainty integration of two and three independent, bivariate normal estimates of a location in abstract, 2D space. Practice 

used one of two visualizations of uncertainty: an ensemble representation showing a random sample from the underlying 
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probability distribution or a summary representation showing 50% and 95% confidence ellipses around the estimates 

(Figure 1). The remaining third were assigned to the unpracticed condition. Both practiced and unpracticed participants 

then did a similar uncertainty integration task in the context of a 3D virtual sand table environment (Figure 2). Participants 

were also randomly assigned to do the 3D task with either an ensemble/scatter visualization or a summary/ellipse 

visualization. Performance on the 3D task was assessed in terms of accuracy and response time to better understand the 

generalizability of practice effects on uncertainty integration with visualized uncertainty. 

 
Figure 1. Examples of stimuli in the 2D training task (top row) and the 3D task (bottom row). Scatter stimuli (left half) and ellipse 

stimuli (right half) represent the underlying 2, 3, or 4 independent estimates and their uncertainties. 

  
Figure 2. Image of 3D qualifying task with sand table and visualization developed using WebGL 2.0. Turquoise rod  indicates the user’s 

cursor and selection. Green rod shows the optimal drop position after the user selects a location. 

2 METHOD 

This work was not pre-registered, so it can be considered exploratory. We report how we determined our sample size, all 

data exclusions (if any), all manipulations, and all measures in the study. 
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2.1 Participants  

This study was conducted online with participants recruited via the web-based service Prolific Academic. People who 

participated in our previous related studies were excluded from recruitment. Individuals who reported being 18 years of 

age or older, being fluent in English, and having normal hearing and vision were invited to join the qualifying session of 

the study. The qualifying session (described below) was used to gather additional demographic and background 

information and to screen for additional inclusion criteria for the main session: normal color vision as confirmed via a web-

based 14-plate Ishihara color vision test and using a desktop or laptop computer with a suitable pointing device (i.e., not a 

touch screen) that was capable of running the web-based virutal environment used in the main session. Participants who 

qualified were invited to take part in the main study. Participants were paid for participating in the qualifier and again if 

they participated in the main study. 

Our goal was to obtain data from 60 participants per condition. This number came from a simulation-based power 

analysis in which we found that number to be sufficient to have a >80% chance to detect a between-subjects effect in initial 

task performance due to differences in visualization used in earlier work with a similar paradigm (Kusumastuti et al., 2022). 

2.2 Qualifier 

Participants in the qualifying session responded to demographic questions, provided information about computer hardware 

used to complete the experiment, and completed a 14-plate Ishihara color vision test. Participants also completed the 

Regulatory Focus Questionnaire (Higgins et al., 2001), the Game Use Inventory (Metcalfe et al., 2015), The Big 5 

Inventory  (John et al., 1999) and a task in the same virtual environment used in the main experiment. The qualifying task 

was used to determine that the participant’s computer could adequately display our virtual environment and that the user 

could successfully interact with it. The task itself was to mark a location at the center of a ring displayed on the terrain of 

a 3D virtual sand table (Figure 2). After the qualifying task, participants completed a 9-item exit questionnaire regarding 

their experience with the task and asking about any technical difficulties. Those who met eligibility criteria, successfully 

completed the qualifying task (completed all three trials of the qualifier task, responded to at least one trial before the 20-

second deadline, and maintained at least 30 frames per second throughout), and reported no technical difficulties were 

invited to participate in the main experiment. 

2.3 Study Design 

Our study used a 3 x 2 x 2 between-by-within design with three between-subjects practice conditions, two between-subjects 

transfer conditions, and a within-subjects complexity condition. Participants practiced in three ways: with summary 

(ellipse) displays of uncertainty in an abstract 2D plane, with ensemble (scatter) displays of uncertainty in an abstract 2D 

plane, and a no-practice control. The transfer conditions involved a terrain model shown as a virtual sand table, on which 

either summary (ellipse) displays were shown on the 3D terrain or ensemble (scatter) displays were shown on the 3D 

terrain. Participants were randomly assigned to one of the six between-subjects conditions. Additional within-subjects 

variables included two levels of difficulty experienced by each participant during the practice and transfer phases.  

2.4 Stimuli 

The 2D practice task and the 3D task (both described below) both used stimuli generated with the same process. Underlying 

each stimulus is a set of 2, 3, or 4 estimates each having bivariate normal probability distributions. The covariance matrix 

for each probability distribution was randomly generated with constraints to produce a set of stimuli with a variety of 

variances and covariances. The center of each estimate was offset from a common point (selected randomly from a uniform 
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distribution over a square with sides half the length of the stimulus and centered on the middle of the stimulus) by a random 

draw from its respective probability distribution. These stimuli are veridical in the sense that the stimulus generating 

process is consistent with the visualized probability distributions. 

Each estimate was displayed either using an ensemble of points drawn randomly from the probability distribution of 

the estimate (scatter stimuli) or using summary ellipses that enclosed the central 50% and 95% of the probability mass of 

the probability distribution (ellipse stimuli). Example stimuli appear in Figure 1. 

2.5 Main Experiment Procedure 

The main experiment consisted of an uncertainty integration practice task that used 2D abstract stimuli (2D practice task), 

a 3D virtual environment-based uncertainty integration transfer task (3D task), and a battery of questionnaires administered 

throughout the experiment. The questionnaires were the Graph Literacy Scale (Galesic & Garcia-Retamero, 2011), the 

Berlin Numeracy Scale (Cokely et. al, 2012), Cognitive Reflection Task (Frederick, 2002), and a Computer Self Efficacy 

Questionnaire (Compeau & Higgins, 1995). Participants were randomly assigned to a practice condition (2D abstract 

scatter stimuli, 2D abstract ellipse stimuli, or no practice control) and a transfer condition (3D scatter sand table or 3D 

ellipse sand table). All participants, including those in the unpracticed control condition, viewed an 8-minute instruction 

video describing the 2D practice task. This video described how to interpret both the scatter and the ellipse stimuli, and it 

explained how to combine two or more estimates to arrive at a final judgement. After the video, participants took a 

comprehension test and did three multiple-choice practice trials. Incorrect answers were given corrective feedback; 

participants moved on when they got all questions correct or after three tries. Participants then completed the 2D practice 

task with either the scatter or ellipse visualization or skipped practice (unpracticed control condition). Finally, participants 

read on-screen instructions for the 3D virtual environment-based transfer task and then completed that task. Following the 

task, participants took the Intrinsic Motivation Inventory (Ryan, 1982) and answered an exit questionnaire. 

2.5.1 Abstract 2D practice task 

For each trial during the 2D practice task, participants were presented with a flat plane which contained a hypothetical 

hidden location. Two or three independent estimates of the hidden location were shown in different colors, and the 

participant’s task was to incorporate information from all displayed estimates to select the most likely location and click 

on that location with their mouse. This uncertainty integration practice task is identical to the practice task we have used 

previously (Kusumastuti et al., 2022); additional details, including additional images of the stimuli used and code to 

generate these stimuli, are available online https://osf.io/5xdsg/. A demonstration version of the task is available online 

https://osf.io/txqk9/wiki/home/. 

Practice used only the assigned visualization type and contained 8 blocks of 30 trials each. In the first three blocks, 

trials contained 2 estimates. In the subsequent three blocks, there were 3 estimates, and the last two blocks had both 2 and 

3 estimates randomly intermixed. Participants were given 10s to respond with a mouse click. After each trial, feedback 

displayed the participant’s selected location and the most likely (best answer) location. Points for accuracy (out of 100 

possible) and speed (out of 20 possible) were displayed, as was a cumulative total score for the block. Accuracy points 

were computed as 100 times the ratio of the joint likelihood (i.e., the product of the probability density evaluated at a given 

location for all estimates) at the selected point divided by the joint likelihood at the best point (referred to as the accuracy 

score). Speed points were computed as: 

𝑠𝑝𝑒𝑒𝑑 𝑝𝑜𝑖𝑛𝑡𝑠 = 20 (1 −
𝑟𝑡

𝑟𝑡𝑚𝑎𝑥
)

2.5

 

https://osf.io/5xdsg/
https://osf.io/txqk9/wiki/home/
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The exponent in this function was set so it would have a steep early drop-off to encourage fast responding but not so 

steep as to vanish to zero too early in the response window.  

2.5.2 3D virtual environment-based transfer task 

For the 3D virtual environment-based transfer task, participants were randomly assigned to one of two conditions, 3D 

scatter or 3D ellipse, after which they viewed on-screen instructions for the 3D task. After reviewing the task instructions, 

participants were presented with the same virtual sand table interface from the qualifying task. The 3D task shared the 

same underlying inference task with the 2D practice task: combine two or more independent estimates to select the best 

location. In other ways, the 3D task differed from the 2D practice task. The 3D task was in the context of a virtual sand 

table area where participants could use keyboard and mouse (or other pointing device) to move their perspective relative 

to the sand table. Participant viewpoints were not allowed to pass within or through the virtual sand table. However, 

participants were free to move the camera up as high as they cared to. For each trial, we recorded the integrated distance 

moved and camera angle change. Participants started the trial 4 units of distance (virtual meters) from the center of the 

sand table. Participants used their mouse to rotate the camera as well as to select a location on the terrain. Participants 

could confirm a selected location on the terrain by pressing the space bar, ending the trial. After the participant confirmed 

the location, a small package was animated falling onto the selected location. Post-trial feedback showed the selected 

location, the best location, points for accuracy and speed, and cumulative scores. Because of the requirement to maneuver 

the viewpoint and the more complex method of selecting a location, participants had up to 20 seconds to confirm their 

response. A countdown timer indicated time left, and this timer turned red when less than 5 seconds remained. The 3D task 

contained two blocks of 60 trials. The first block used 2 estimates for each trial and the second block used 4 estimates. The 

experiment software and a demonstration version of the task is available online, https://osf.io/txqk9/wiki/home/. 

All testing was approved by the Institutional Review Board of the U.S. Army Research Laboratory under protocols 

ARL-21-070 and ARL-22-062. 

2.6 Analysis 

The main goal of analyses was to assess effects of the 2D practice task on performance of the 3D task, with emphasis on 

effects at the start and end of each block as well as how performance changed over time. Performance was analyzed in 

terms of three separate performance models: two for accuracy (accuracy score, error distance), and one for speed (response 

time). The accuracy score was the basis for performance feedback to participants, and it ranges from zero to one, with a 

score of one representing maximum accuracy. In another model, accuracy was analyzed in terms of the Euclidean distance 

between the given response and the correct response. Although the points-based feedback emphasized the accuracy score, 

both the location of the given response and of the correct response were visible during the feedback screen, so some 

participants may have construed their performance as related to the linear distance from their response to the correct one. 

The feedback used a non-linear transform to convert response times into points for response speed, but here we analyze 

response time directly. 

Each outcome was analyzed separately using Bayesian hierarchical models. The models were implemented in Stan 

(Stan Development Team, 2022), and code for the models can be found online at https://osf.io/5xdsg/. Samples were 

generated from these models using the No-U-Turn sampler (Hoffman & Gelman, 2014) with four independent chains each 

having 2000 warm-up samples and 1000 post-warm-up samples. All sample sets had no divergences, all chains had BFMI 

> 0.3, and all parameters had effective sample sizes > 100 and r-hat < 1.1. 

Because we expected performance to change over time, the models all made use of an exponential learning function: 

https://osf.io/txqk9/wiki/home/
https://osf.io/5xdsg/


9 

𝑓(𝑡|𝜋, 𝛿, 𝛼) = 𝜋 + 𝛿(1 − 𝑒−𝛼𝑡) (1) 

where time t is in terms of the proportion of trials completed, 𝜋 is the initial value of the function, 𝜋 + 𝛿 is the value 

the function approaches after all learning is complete (i.e., at time infinity), and the 𝛼 parameter, which is constrained to 

be greater than 1, is related to the learning rate. Note, because 𝛿 is unconstrained, this function can model performance 

that gets worse over time as well. 

2.6.1 Accuracy score Model 

To model accuracy score, we used a zero-inflated beta model. A zero-inflated beta model is an appropriate choice because 

haphazard or accidental clicks are likely to evaluate to zeroes, while the rest of the clicks will have ratio values between 0 

and 1. Although the accuracy score is theoretically never exactly zero, in practice we recorded the ratio out to eight figures 

past the decimal point, so there was a reasonable possibility that an inaccurate response would evaluate to zero. A similar 

theoretical issue applies to ratios very close to one, but this occurred in only 22 trials (0.05%) of cases, so we subtracted 

1e-8 from those rather than using a zero-one-inflated model. Under this zero-inflated beta model, the probability of an 

accuracy score R is given as: 

𝑝(𝑅) = {
𝑍, 𝑖𝑓 𝑅 = 0
(1 − 𝑍)ℬ(𝑅|𝜇, 𝜅), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2) 

The parameters of this model are the zero-inflation parameter Z, which is the probability a response will evaluate to 

zero, and the two parameters of the beta distribution; we used the mean 𝜇, and sample size (or more concisely, precision) 

𝜅 parameterization to facilitate interpretation. Each of these parameters changed with time following the exponential 

learning function defined in (1) above: 

𝑙𝑜𝑔𝑖𝑡(𝑍) =  𝑓(𝑡|𝜋𝑍, 𝛿𝑍, 𝛼𝑍) + 𝑚𝑍 + 𝑐𝑍 (3) 

𝑙𝑜𝑔𝑖𝑡(𝜇) = 𝑓(𝑡|𝜋 , 𝛿 , 𝛼 ) + 𝑚 + 𝑐 (4) 𝜇 𝜇 𝜇 𝜇 𝜇

log(𝜅 − 1) = 𝑓(𝑡|𝜋𝜅 , 𝛿𝜅 , 𝛼𝜅) + 𝑚𝜅 + 𝑐𝜅  (5) 

Each of the parameters of the exponential learning functions was indexed by condition (i.e., the combination of practice 

condition (unpracticed, practiced with ellipse, practiced with scatter), 3D stimulus condition (ellipse, scatter), and block 

(simple 2-estimate or complex 4-estimate), and these were modeled as drawn from a normal distribution with a common 

offset 𝜃 and standard deviation 𝜏. Using 𝜋𝜇,𝑖 as a representative example: 

𝜋𝜇,𝑖 ∼ 𝒩(𝜃𝜇 , 𝜏𝜇) (6) 

𝜃𝜇  ∼ 𝒩(0,3) 

𝜏𝜇 ∼ 𝒩+(0,2) 

The terms m and c in (3-5) are random effects of stimulus and participant, respectively. The stimulus random effects 

were modeled with a normal distribution with mean zero and different standard deviations for 2-estimate stimuli (i.e., 

𝑚𝑠𝑖𝑚𝑝𝑙𝑒 ∼ 𝒩(0, 𝜎𝑠𝑖𝑚𝑝𝑙𝑒), 𝜎𝑠𝑖𝑚𝑝𝑙𝑒 ∼ 𝒩+(0,1)) and 4-estimate stimuli (i.e., 𝑚𝑐𝑜𝑚𝑝𝑙𝑒𝑥 ∼ 𝒩(0, 𝜎𝑐𝑜𝑚𝑝𝑙𝑒𝑥), 𝜎𝑐𝑜𝑚𝑝𝑙𝑒𝑥 ∼

𝒩+(0,1)). The participant random effects were modeled similarly, but the random effects in the 2-estimate and 4- estimate 

conditions were potentially correlated. 
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Priors for the common offset of the 𝜋 parameter in (6) were normal with mean zero and standard deviation 3 and were 

normal with mean zero and standard deviation 2 for 𝛿 and log (𝛼 − 1). All other priors were standard normal or standard 

half-normal, as appropriate. 

2.6.2 Error Distance Model 

Analysis of error distance used a normalized Cartesian coordinate system, where terrain extended from -0.5, -0.5 to 0.5, 

0.5. Response error D was computed as the Euclidian distance between a response at location X and the best answer at 

location Y, i.e., 𝐷 = |𝑋 − 𝑌|. To account for responses very far from the correct answer, we used a mixture model that had 

some probability a response was selected effectively uniformly at random from the entire response area and otherwise 

came from a spherical normal distribution centered on the best response: 

𝑝(𝑋) = {
𝒰(𝑋), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑢

𝒩(𝐷|0, Σ), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑢
(7) 

Where 𝒰 is the bivariate uniform distribution over (-0.5, -0.5) to (0.5, 0.5) and 𝒩 is the bivariate normal distribution 

with covariance matrix Σ = [𝜎2 0
0 𝜎2]. The parameters of this model are therefore u, the probability of a uniform 

response, and 𝜎, the standard deviation of the probability distribution. These were modeled with exponential learning 

functions (1), as in the accuracy score model:  

log 𝜎 = 𝑓(𝑡|𝜋𝜎 , 𝛿𝜎 , 𝛼𝜎) + 𝑚𝜎 + 𝑐𝜎 

𝑙𝑜𝑔𝑖𝑡(𝑢) = 𝑓(𝑡|𝜋𝑢, 𝛿𝑢, 𝛼𝑢) + 𝑚𝑢 + 𝑐𝑢 

The prior on the common offset of 𝜋𝜎 was normal with mean -2 and standard deviation 1, and on 𝜋𝑢 was mean -3, 

standard deviation 1. These were chosen to reflect the expectation that the probability of uniform responding was low and 

that when they were non-uniform, the errors should be somewhat less than 0.5. Standard deviations on condition effects 

were half-normal with standard deviation 0.5 as were the standard deviations for random effects of stimulus and participant. 

The exception was the 𝛼 parameters where the prior was normal with mean zero and standard deviation 0.2. 

2.6.3 Response Time Model 

Response times were modeled using a truncated lognormal distribution: 

log(𝑅𝑇) = 𝒩(𝜇, 𝜎 )𝑇[, log(𝑅𝑇𝑚𝑎𝑥)] (8) 

If a participant did not give a response by the time-out of 𝑅𝑇𝑚𝑎𝑥=20s, that response time was recorded as 20s, and the 

probability of a response at 20 was modeled as the total probability mass of the untruncated response time distribution 

above 20. As in the previous models, the parameters were modeled with exponential learning functions: 

𝜇 = 𝑓(𝑡|𝜋𝜇 , 𝛿𝜇 , 𝛼𝜇) + 𝑚𝜇 + 𝑐𝜇  

log 𝜎 = 𝑓(𝑡|𝜋𝜎 , 𝛿𝜎 , 𝛼𝜎) + 𝑚𝜎 + 𝑐𝜎 

The prior for the common offset on 𝜋𝜇 was normal with mean 0 and standard deviation 1.5, and for log(𝜋𝜎) was normal 

with mean -0.5 and standard deviation 0.5. For both log (𝛼𝜇 − 1) and log (𝛼𝜎 − 1), the prior was normal with mean -2 

and standard deviation 1. Priors on the standard deviations of the random effects of stimuli were half-normal with mean 

zero and standard deviation 0.2; the priors on the standard deviations of the random effects of participant were half-normal 

with mean zero and standard deviation 0.1. 
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As an overall note, the priors we selected were chosen to provide enough information to encourage solutions at the 

correct scale rather than expressing some theoretically driven expectation about the solutions. Importantly, the priors for 

the different practice conditions were identical. 

3 RESULTS 

A total of 390 participants completed the experiment. Twelve were excluded from analysis (8 due to having an average 

frame rate lower than 20 fps, 3 due to failing to respond to 30 or more trials out of 120, and 1 due to achieving an overall 

average accuracy lower than 10%). The remaining 378 were included in analysis. Because data were collected 

asynchronously in parallel, different numbers of participants were included in the six experimental conditions (Table 1). 

The mean self-reported age of these participants was 27 (median: 25, range 18-67). Detailed demographics are available 

in an online supplement, https://osf.io/5xdsg/.  

Table 1. Participant count per condition. 

 Practice condition 

stimulus Ellipse Scatter Unpracticed 

Ellipse 61 62 66 

Scatter 60 60 69 

Participants in the practiced conditions took on average 89 min (std 27 min, range 43 to 209 min) from start to finish. 

Participants in the unpracticed condition took on average 69 min (std 25 min, range 33 to 190 min) from start to finish. 

Performance on the uncertainty integration task was analyzed in terms of three separate performance metrics: two for 

accuracy (accuracy score, error distance), and one for speed (response time). For each of these three models, we summarize 

the main results with posterior predictive group mean time-courses and emphasize the initial and final performance within 

a block. Each model has two or three parameters that vary over time, and time-courses for these parameters are also shown. 

3.1 Accuracy score 

Accuracy, measured with the ratio of the likelihood at the selected location to the likelihood at the best location and 

averaged over time, appears in Figure 3. Collapsing over time and practice condition, posterior mean accuracy with ellipse 

stimuli and the simple 2-estimate task was 0.791, 95% credible interval [0.786, 0.797], ellipse stimuli and the complex 4-

estimate task was 0.572 [0.566, 0.580], scatter stimuli and the simple 2-estimate task was 0.725 [0.719, 0.731], and scatter 

stimuli and the complex 4-estimate task was 0.567 [0.560, 0.574]. Average accuracy was lower for the more complex 4-

estimate task than the simple 2-estimate task. The mean difference was 0.189, 95% credible interval [0.182, 0.195]. 

Considering only the simple 2-estimate task, accuracy was higher for ellipse stimuli than scatter stimuli, with a mean 

difference of 0.066 [0.059, 0.074], but accuracy was similar for ellipse and scatter stimuli in the complex 4-estimate task, 

with a mean difference of 0.006 [-0.004, 0.015]. Effects of practice condition within a given task complexity and stimulus 

type were small and included zero in their 95% credible intervals with the exception of the simple 2-estimate task with 

ellipse stimuli. There, accuracy of participants who did not practice was higher than the accuracy of those who practiced 

with scatter and ellipse, with mean differences of 0.013 [0.001, 0.025] and 0.03 [0.019, 0.044], respectively, and 

participants who practiced with scatter had higher accuracy than those who practiced with ellipses, with mean difference 

of 0.018 [0.005, 0.018].   

https://osf.io/5xdsg/
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Figure 3. Grand mean accuracy (measured as the ratio of the likelihood at the selected location to the likelihood at the best location) by 

practice condition, stimulus type, and task complexity. Circles show the posterior predictive mean and credible interval. Adjacent 

diamonds show the sample grand means. 

Accuracy over time, along with modeling results, are in Figure 4. Differences in accuracy score due to practice condition 

for a given stimulus type and task complexity were all small and the 95% credible interval included zero in all cases both 

initially and at the end of the block. When comparing effects of stimulus type by practice condition and task complexity, 

the largest difference arose at the end of the simple 2-estimate task block: accuracy with ellipse stimuli was higher than 

with scatter stimuli at the end of the simple 2-estimate task block for participants who practiced with scatter stimuli (mean 

difference 0.094, 95% credible interval [0.021, 0.171]) and who did not practice (mean difference 0.092 [0.024, 0.157]), 

and less so for those who practiced with ellipse stimuli (mean difference 0.045 [-0.030, 0.116]).  
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Figure 4. Posterior predictive summaries of accuracy, calculated as the ratio of the likelihood at the selected location to the likelihood at 

the most likely location. Posterior summaries include central 66% and 95% credible intervals of the posterior predictive distribution of 

starting accuracy  (accuracy on the first trial of the block, left) and ending accuracy (accuracy on the last trial of the block, right). Dots 

show the experiment sample mean. The central panel shows how accuracy score changed over time, with light ribbons covering a 95% 

credible interval and darker ribbons covering a 66% credible interval. Lines show the experiment sample mean. 

There were some small differences in the parameters of the model. The zero-inflated beta model of accuracy (2) has 

three parameters: μ, the mean of the beta distribution, indicates a typical response ratio; κ, the precision parameter of the 

beta distribution, increases as responses become more tightly clustered around that mean; and Z, the zero-inflation 

parameter, which is the probability that the response ratio is zero (which is theoretically impossible in a pure beta model). 

The change in these parameters over time was modeled with exponential growth functions. Parameter time series estimates 

of the zero-inflated beta model appear in Figure 5. For participants who did the simple 2-estimate 3D task with ellipse 

stimuli, both the beta distribution mean, μ, and the beta precision parameter, κ, increased fastest for participants who 

practiced with ellipse stimuli, compared to those who practiced with scatter or did not practice, with posterior mean 

differences in the rate parameter for μ of -21.8 [-56.6, -1.1] and -27.4 [-61.6, -8.7], respectively and for κ of -20.3 [-58.0, -

1.7] and -24.5, [-61.0, -6.5], respectively. This shows that for participants who practiced with ellipse stimuli, performance 

plateaued rapidly compared to those in the other practice conditions. However, examining performance parameters at the 

end of the block on ellipse stimuli and the simple 2-estimate task revealed that the mean parameter, μ, was higher for those 

who did not practice compared to those who practiced with ellipse stimuli, with mean difference of 0.04 [0.02, 0.06]. 

Similarly, the precision parameter, κ, was higher for those who did not practice compared to those who practiced with 

ellipse stimuli, with mean difference of 0.860 [0.055, 1.697]. This suggests that with ellipse stimuli, unpracticed 
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participants ended up with slightly more accurate and more precise performance compared to participants who practiced 

with ellipse stimuli. 

Unpracticed participants had a higher initial zero-inflation parameter, Z, in the simple 2-estimate block relative to those 

who practiced with ellipse stimuli in both the ellipse condition (mean difference 0.044 [0.003, 0.098]) and the scatter 

condition (mean difference 0.071 [0.021, 0.138]), but zero-inflation, Z, for all practice conditions was similar by the end 

of the simple 2-estimate block. This shows that unpracticed participants had a higher risk, relative to trained participants, 

of providing a wildly incorrect response near the beginning of the simple 2-estimate block, but that this risk differential 

was eliminated over the course of the block. 

Taken together, the differences in modeled performance parameters over time showed that in the simple 2-estimate task 

with ellipse stimuli, unpracticed participants had an initially relatively high risk of very inaccurate responding and 

improved a bit slower than those in the other conditions, but their eventual performance parameters were higher compared 

to those in the other conditions. However, these differences in model parameters did not lead to a substantial difference in 

posterior predicted group mean accuracy. 

 
Figure 5. Posterior timeseries of the parameters of the zero-inflated beta model by task complexity (rows) and stimulus type (columns). 

The zero-inflated beta model includes a mean parameter μ, modeling participants’ typical accuracy in terms of accuracy score (left), a 

sample size parameter κ, modeling the dispersion of their accuracy values (middle), and a zero-inflation parameter Z, modeling the 

probability of an extremely erroneous response (right). Time series show mean, central 66% (dark ribbons) and 95% (light ribbons) 

credible intervals. Trial time is the proportion of the 60-trial block elapsed. 

The accuracy model incorporated random effects of participant, with correlations among the random effects for a 

participant when they were in the simple 2-estimate task block and in the complex 4-estimate task block. Random effects 

were highly correlated in each of the three parameters of the model: beta distribution mean, μ, r = .819, 95% credible 
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interval [.766, .862], beta distribution precision, κ, r = .728 [.637, .809], and zero-inflation, Z, r = .522 [.288, .732]. These 

high correlations indicate that participants’ individual differences—perhaps arising from preexisting skill levels or 

dispositional traits—consistently affect performance. Future work should endeavor to identify what individual traits may 

underlie these effects. 

3.2 Error Distance 

Error distance is the distance between the best answer and the given answer in terms of normalized screen units. It differs 

from the accuracy analysis, above, because error distance ignores the likelihood at the selected location. Group mean and 

posterior predictive intervals for error distance appear in Figure 6. Averaging over practice condition, posterior predicted 

errors were smaller for ellipse stimuli than scatter stimuli in the simple 2-estimate task, mean difference .011, [.008, .013]. 

In the complex 4-estimate task block, the two stimulus types had similar posterior predicted errors, mean difference .000 

[-.002, .002]. Average posterior predicted errors were smaller in the simple 2-estimate task than in the complex 4-estimate 

task with ellipse stimuli, mean difference .012 [.009, .014], but average errors were similar in the simple 2-estimate and 

complex 4-estimate tasks with scatter stimuli, mean difference .001, [-.002, .003]. Within a given complexity block and 

stimulus type, differences due to practice condition included zero in their 95% credible intervals with the exception that in 

the complex 4-estimate task with scatter stimuli, those who practiced with ellipses had smaller errors than those who did 

not practice, mean difference 0.003 [0.000, 0.007]. Consistent with the very high overall accuracy on the simple 2-estimate 

task with ellipse stimuli described in the previous section, error distances were also very low for that combination of 

complexity and stimulus, and this was most extreme in the participants who did not practice. This accounts for the mismatch 

between observed mean and posterior predicted mean in that case, because the priors on the model represent the expectation 

that such small errors were unlikely. 
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Figure 6. Posterior predicted error distance (lower is better) averaged over time is indicated by circles with a 95% credible interval. 

Diamonds show experimental sample mean. 

The time series of posterior predictive error distance appears in Figure 7. All differences due to practice condition 

within a given task complexity and stimulus type were small and the 95% credible interval included zero at both the start 

of the block and at the end of the block. 

The model of error distance was a mixture model (7) including responses drawn from a normal distribution centered on 

the correct answer for each trial (to represent legitimate attempts to do the task) and responses selected uniformly from the 

entire response space (to represent accidental, haphazard, or very inaccurate clicks). As such, the parameters of the model 

were the standard deviation of the normal error probability distribution, 𝜎, and the probability of a response coming from 

the uniform distribution, u (Figure 8). In the early parts of both the simple 2-estimate and the complex 4-estimate blocks, 

there was a higher probability of a uniform response that decayed quickly. This suggests that in the initial trials of both the 

simple 2-estimate and the complex 4-estimate blocks, participants were relatively more likely to click far from the correct 

response. This is consistent with a similar profile in the accuracy score model showing an initially high risk of an accuracy 

score of zero. 

Initial values of the standard deviation of the error probability distribution, 𝜎, and the probability of a response coming 

from the uniform distribution, u, were similar across the different practice conditions, with the 95% credible interval 

containing zero for all practice contrasts. The same was true at the end of the block, with the exception that the error 

standard deviation, 𝜎, was larger in the simple 2-estimate task with ellipse stimuli for those who practiced with ellipses 
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compared to those who practiced with scatter (mean difference 0.003 [0.001, 0.006]) and compared to those who did not 

practice (mean difference 0.005 [0.002, 0.007]). 

 
Figure 7. Posterior predictive time-series of error distance, a measure of inaccuracy. Distance units are relative to the width of the virtual 

environment. Posterior summaries include the central 66% and 95% credible intervals of the posterior predictive distribution of starting 

error distance (error distance on the first trial of the block, left) and ending error distance (error distance on the last trial of the block, 

right). Dots show the experimental sample mean. The central panel shows how the mean error distance changed over time, with light 

ribbons covering a 95% credible interval and darker ribbons covering a 66% credible interval. Lines show the experimental sample 

mean. 

As in the accuracy score model, the random effects of participant in the simple 2-estimate and the complex 4-estimate 

blocks were highly correlated: for the normal error standard deviation, 𝜎, the correlation was r = .746 95% credible interval 

[.688, .799], for the probability of uniform response, u, it was r = .460 [.080, .854]. As in the accuracy score model, these 

correlations suggest that individual differences, rather than randomness, might account for differences in performance 

between individuals. 
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Figure 8. Posterior timeseries of the response error mixture model by stimulus complexity (rows) and stimulus type (columns). The 

parameters of this model are the standard deviation of the normal error probability distribution 𝜎, modeling participants’ typical 

accuracy in terms of error distance (left) and the probability of a response coming from the uniform distribution instead of the normal 

probability distribution u, modeling the probability of an extremely erroneous response (right). Time series show mean, central 66% 

(dark ribbons) and 95% (light ribbons) credible intervals. Trial time is the proportion of the 60-trial block elapsed. 

3.3 Response Time 

In contrast to the models of response accuracy, the model of response time showed a dramatic difference between those 

who practiced and those who did not (Figure 9). Averaging over the course of blocks, in the simple 2-estimate task with 

ellipse stimuli, unpracticed participants responded slower by 1.78s [1.66s 1.90s] and 1.80s [1.68s, 1.92s] than those who 

practiced with scatter or ellipse stimuli, respectively. In the simple 2-estimate task with scatter stimuli, unpracticed 

participants responded slower by 2.04s [1.91s, 2.16s] and 2.42s [2.30s, 2.55s] compared to those who practiced with scatter 

and ellipse stimuli, respectively. In the complex 4-estimate task with ellipse stimuli, unpracticed participants responded 

slower by 1.37s [1.25s, 1.48s] and by 1.29s [1.17s, 1.40s] compared to those who practiced with scatter or ellipse stimuli, 

respectively. In the complex 4-estimate task with scatter stimuli, unpracticed participants responded slower by 1.00s [0.88s, 

1.11s] and by 1.53s [1.43s, 1.64s] compared to those who practiced with scatter or ellipse stimuli, respectively. Less 

dramatically, with scatter stimuli, participants who practiced with scatter stimuli responded slower by 0.39s [0.28, 0.49s] 

and 0.54s, [0.44s, 0.63s] compared to those who practiced with ellipse stimuli in the simple 2-estimate task and the complex 

4-estimate task, respectively. 
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Figure 9. Posterior predicted response time (lower is faster) averaged over time is indicated by circles with a 95% credible interval. 

Diamonds show the experimental sample mean.  

The time course of RT means and posterior predictive intervals are shown in Figure 10. The initial and final RT 

estimates are also shown in Figure 11 with expanded scales to visualize differences more clearly. There was a mismatch 

between observed mean response times on the first one or two trials and the model’s posterior predictive distribution over 

those trials in the simple 2-estimate task for some practice conditions. This is likely due to extreme response times on 

initial trials as participants used the 3D interface for the first time in the main experiment. A more detailed model could 

account for this brief, initial burn-in, but since posterior predictive fit was good for subsequent trials, we instead focus on 

trials 3+. Participants who did not practice responded more slowly throughout the experiment than those who did. For 

example, unpracticed participants’ posterior predictive mean initial response time for scatter stimuli in the simple 2-

estimate block was 10.14 s [9.26, 11.06] compared to 6.15 s [5.46, 6.91] for those who practiced with scatter stimuli and 

6.18 s [5.49, 6.99] for those who practiced with ellipse stimuli. The type of stimuli used in practice did not affect response 

times very much, with the exception at the end of the simple 2-estimate task block with scatter stimuli: participants who 

practiced with scatter stimuli responded 0.50s [0.01s, 0.99s] slower than those who practiced with ellipse stimuli. Response 

times in the complex 4-estimate block were similar to corresponding response times in the simple 2-estimate block, with 

the exception that unpracticed participants using scatter stimuli responded slower by 0.84s [0.23s, 1.46s] at the end of the 

simple 2-estimate task compared to at the end of the complex 4-estimate task. This suggests that the added complexity did 

not substantially slow down task performance. 
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Figure 10. Posterior predictive summaries of response time. Posterior summaries include the central 66% and 95% credible intervals of 

the starting response time (response time on trial 3 of the block, left) and ending response time (response time on the last trial of the 

block, right). Dots show the experimental sample mean. Trial 3 is illustrated, because of very long response times on trials 1 and 2 that 

fell far outside the posterior predictive distribution. The central panel shows how the response time changed over time, with light 

ribbons covering a 95% credible interval and darker ribbons covering a 66% credible interval. On the central panel, dots indicate cases 

in which response times fell outside the 95% credible interval on the first two trials. Lines show the experimental sample mean. 



21 

 
Figure 11. Detail of response time distributions at start (trial 3) and end (trial 60) of blocks. Posterior summaries include the central 66% 

and 95% credible intervals of the response time on trial 3 (left) and final response time (right). Dots show the experimental sample 

mean. 

The parameters of the response time model were the mean, 𝜇, and standard deviation, 𝜎, of the normal distribution over 

the natural logarithm of response time (Figure 12). Both parameters showed a separation of unpracticed participants from 

those who practiced with either ellipse or scatter stimuli. In all cases, the mean parameter, 𝜇, decreased more slowly over 

time, reflecting faster responses, compared to the standard deviation parameter, 𝜎, which decayed relatively faster. This 

initially high but rapidly dropping standard deviation parameter indicates more unusually slow responses at the beginning 

of both simple 2-estimate and complex 4-estimate blocks. The slow responses at the beginning of the simple 2-estimate 

block might be partially explained by general unfamiliarity with the virtual environment and its interface (although all 

participants experienced the same environment and interface briefly in the qualifying session). However, in the complex 

4-estimate block, this likely reflects adaptation to the much more complex task. 
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Figure 12. Posterior timeseries of the response time model by stimulus complexity (rows) and stimulus type (columns). The parameters 

of this model are the mean parameter, μ (left) and standard deviation parameter, 𝜎 (right) of the normal distribution of log(RT). Time 

series show mean, central 66% (dark ribbons) and 95% (light ribbons) credible intervals. Trial time is the proportion of the 60-trial 

block elapsed. 

Random effects of participants for the simple 2-estimate and complex 4-estimate blocks were again highly correlated, 

especially the mean parameter, 𝜇: r = 0.850 [.821, 0.875] and less so the standard deviation parameter, 𝜎: r = .629 

[.540, .709]. Individual differences are thus likely to influence performance not only in terms of accuracy but also in terms 

of response time. 

3.4 Results Summary 

Practice with 2D abstract stimuli led to faster responses in the 3D sand table transfer task, even for a different visualization 

type (ellipse vs. scatter) and with greater data complexity. However, the practice did not yield improvements in accuracy 

on the transfer task. Responses were much slower for participants who received no practice compared to participants who 

practiced in abstract 2D with either scatter or ellipse stimuli. Despite this difference in response times, accuracy score and 

error distance were both similar across practice conditions, with the exception that accuracy averaged over the simple 2-

estimate task block with ellipse stimuli was higher for unpracticed participants than those who practiced, although this 

difference was small and only detected when averaging over the entire task block.  

Participants were less accurate when responding in the complex 4-estimate condition compared to the simple 2-estimate 

condition. The comparison between performance with simple 2-estimate and with complex 4-estimate stimuli reveals a 

drop in accuracy score from simple to complex. The same comparison for error distance showed an increase in error 

distance associated with ellipse stimuli, but for scatter stimuli error distance was similar between the simple 2-estimate 
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and complex 4-estimate task blocks. Response times were similar or faster in the complex 4-estimate task block compared 

to the simple 2-estimate task block. 

Participants generally performed better, or similarly, with the 3D ellipse visualization than with the 3D scatter 

visualization. Within the simple 2-estimate task block, responses had higher accuracy scores for ellipse stimuli than scatter 

stimuli, although the error distances were more similar. Response times for ellipse stimuli in the simple 2-estimate task 

block were faster than response times for scatter stimuli in the simple 2-estimate task block except for the group who 

practiced with ellipse stimuli. 

4 DISCUSSION 

The main finding of this experiment is that practice with an abstract, 2D uncertainty practice task results in substantially 

faster responses on a transfer task situated within a 3D virtual environment, and this increase in speed is not associated 

with a loss in accuracy. This speed increase was demonstrated in a task that requires participants to combine multiple, 

uncertain estimates visualized with either contour ellipses or scatter plots to identify a most likely spatial location. This 

result is good news, as it suggests that practice in an abstract task can produce speed improvements that transfer to a new 

context and platform, as well as to different visualizations and across difficulty levels. In what follows, we discuss 

additional details of the results as well as their implications for designs of visualizations and other tools to help people to 

make better, faster probabilistic decisions.  

4.1 Practice improved speed across visualization types 

Our results replicate, in a new 3D context and platform, that practice with one visualization type (ellipse or scatter) 

improves speed of performance with the other type of visualization, without sacrificing accuracy. This supports H1 and is 

similar to what was observed in Kusumastuti et al. (2022), who found that practice in abstract 2D with one visualization 

type led to improvements in speed as well as accuracy when tested on different visualization types. Kusumastuti et al. 

(2022) used the same platform and context for practice and for testing, and they tested participants with fairly low data 

complexity (two or three independent data sources visualized at a time). This similarity of performance suggests that 

learning with one visualization type transfers to performance with the other. A theoretical account of reasoning with 

visualized uncertainty grounded in cognitive science (Padilla et al., 2018) describes the process of converting a visual array 

to a conceptual message and then using that conceptual message to answer questions and make decisions. Practice with a 

given visualization seems unlikely to improve the process of converting an entirely different visual array to a conceptual 

message, because those processes are specific to the visualization type. However, it is consistent with the Padilla et al. 

account that practice could improve the reasoning processes that are common to both the practiced and un-practiced 

visualization, i.e., the underlying uncertainty integration and probabilistic inference task. 

Although practice with one stimulus type had similar effects on performance using the other, there were some subtle 

differences. For simple 2-estimate ellipse stimuli in the 3D task, practice with ellipses in the 2D practice task was associated 

with lower accuracy and lower precision (i.e., lower μ and κ estimates, the accuracy score beta distribution mean and 

sample size, respectively) as well as higher error standard deviation estimates. Along similar lines, for both simple 2-

estimate and complex 4-estimate 3D scatter stimuli, those who practiced with scatter stimuli responded more slowly than 

those who practiced with ellipses. Together, these findings suggest some minor advantages to cross-practice, although it is 

not clear why that might be the case. 
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4.2 Practice in 2D improved speed in 3D 

It is possible that speed improvements observed by Kusumastuti et al. (2022) may have arisen due to participants becoming 

more comfortable with using the particular display platform and context, namely, a static 2D display of abstract, context-

free data. Our current study found that participants who practiced in abstract 2D transferred their speed gains to a more 

immersive 3D platform with a more concrete visual context and modest narrative context for the data. This supports H2 

and suggests that participants did not simply increase their facility with the display platform or abstract context. However, 

there are some caveats to consider, given the many differences between 2D and 3D displays. 

One explanation for the faster responses of those who practiced is that the practice increased speed and fluency in the 

reasoning underlying this uncertainty integration task. However, another possible explanation is that experience with the 

more stringent 2D task timer led to faster responses even when working with the less strict 3D task timer. The 3D task 

timer was less strict by necessity, as participants would need more time to rotate and navigate the interactive 3D display. 

The participants who practiced experienced the same 3D task as those who did not, but trials in the abstract task ended 

after 10 seconds (rather than 20 seconds in the 3D task). Participants might have internalized the 10-second deadline from 

the practice and tried to stick to it even in the 3D task. Additionally, participants who did the 2D practice task experienced 

a longer experiment overall, so they might have been in more of a hurry to get done compared to the participants who did 

not practice. Despite differences in speed, posterior estimates of accuracy (in terms of accuracy score and error distance) 

were similar or better among the participants who practiced compared to those who did not, with the exception of a small 

accuracy advantage for unpracticed participants using the ellipse stimuli averaged over the simple 2-estimate task block In 

relative terms, unpracticed participants were 3.9% more accurate than those who practiced with ellipse stimuli, while the 

difference in response time was 46.0%. The absence of an accuracy decrement elsewhere and a relatively small accuracy 

decrement in the simple 2-estimate task with ellipse stimuli casts doubt on explanations that involve participants rushing. 

Although a dramatic speed increase with no or very minor accuracy decrement could be considered very advantageous 

in time-limited environments, it might be surprising that accuracy was not also improved with practice. One possibility is 

that the longer procedure for participants who practiced led to those participants being fatigued relative to those who did 

not practice. The average total study duration was 69 minutes for unpracticed participants and 89 minutes for those who 

practiced. We might imagine that accuracy would have been higher if practiced participants had not experienced an 

additional 20 minutes of procedure or that unpracticed participants’ accuracy would be worse if they had done an extra 20 

minutes of procedure that was not practice. Future work could examine this possibility by ensuring equivalent procedure 

duration by adding some equally fatiguing but unrelated task for the unpracticed group. 

Prior studies that have compared performance in 2D vs 3D displays found that response times are slower in a 3D display 

as compared to a 2D display, and attributed this to 3D displays having visual clutter that distracts people from making 

inferences from helpful cues that may have been more salient in a 2D display (Liao, Dong, Peng, and Liu, 2016; Hegarty 

et al., 2009). We did not compare response times between the 2D and 3D tasks in this study, since differences between the 

tasks would make such a comparison difficult to interpret, although one possibility is that practice in the 2D task enabled 

people to ignore the task-irrelevant details in the 3D task, leading to faster performance compared to the unpracticed 

participants. Additionally, there was a substantial difference in visual clutter between the 3D ellipse stimuli and the 3D 

scatter stimuli. This could potentially account for the small performance advantage of ellipse stimuli over scatter stimuli 

observed in the simple 2-estimate task blocks. In complex 4-estimate task blocks, performance using ellipse and scatter 

stimuli were similar. If clutter accounts for the performance difference in the simple 2-estimate task blocks, perhaps even 

the ellipse stimuli resulted in too much clutter on the complex 4-estimate blocks. 
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As we did not vary the 3D environment, it is possible our findings could be somehow specific to the properties of the 

3D terrain we used. For example, the mountainous terrain introduced substantial verticality into the display that distorted 

the contours of the ellipse stimuli, but the terrain was smooth enough that occlusion was not a major concern. A more 

jagged or more urban terrain would likely introduce challenges to the visualizations we used in this study. Similarly, a 

more realistic terrain might introduce substantially more clutter and exacerbate any problems clutter introduces. Our 3D 

environment primarily provided a different task context with different visualization details to assess the effects of practice 

in 2D, but the extent to which any details of our findings extend to other 3D environments would need to be verified. 

Regardless of previous experience in the 2D practice task, both accuracy and speed improved over the course of the 3D 

task. Accuracy improvements were associated both with more precise and accurate responses as well as with reductions in 

the frequency of very incorrect and very slow responses. These improvements primarily happened over the first 20 or so 

trials in the simple 2-estimate block. Practice with feedback enables people to improve their performance, whereas 

repeating a task without feedback (or any other way to evaluate the degree of success a given approach to the task) makes 

improvement much less likely (Ericsson et al., 1993). Without feedback, a person cannot usefully try out different strategies 

or shape their behavior incrementally to approach their goal. Although this finding might not be surprising, it underscores 

the value in providing immediate feedback in training programs.  

4.3 Practice improved speed with more complex data 

Improvements in performance may derive from improvements in the underlying probabilistic inference that participants 

must perform to succeed at the tasks. However, it is also possible that participants simply discovered or settled upon rule-

of-thumb heuristics that, while not optimal, may have nonetheless yielded improved performance in simple data contexts. 

The current study examined this by requiring participants to engage with the visualization and decision-making task using 

four independent data sources. This more complex data would render many simplistic heuristics ineffective. In support of 

H3, we found that participants trained on simpler data were able to transfer their speed gains to the more complex data 

tasks.   

4.4 What practice reveals 

Some uncertainty visualization research does not include performance-related feedback (for examples, see Nguyen et al., 

2020; Padilla, Powell, et al., 2021; Ruginski et al., 2016; Tak et al., 2014, 2015). Understanding how someone without 

training or previous experience uses a visualization and what errors they might make is critical in communicating 

uncertainty to the general public. However, this approach obscures any distinction between inherent limitations of the 

particular visualization itself and limitations due to unfamiliarity or inexperience on the part of the user. When a 

visualization is intended to be used by someone without specific familiarity or experience, then this distinction is not 

particularly relevant or important; the goal is to empower that naïve user. On the other hand, when the goal is to produce 

a tool to help someone who has interest and opportunity to invest in some practice or training, then the distinction between 

a flawed visualization and a less intuitive one becomes highly relevant.  

Confidence intervals have been shown to be ineffective at conveying uncertainty accurately (Belia et al., 2005; Correll 

& Gleicher, 2014; Joslyn & LeClerc, 2012; Padilla et al., 2017) and similar concerns might apply to the ellipse stimuli in 

the present study. Moreover, these displays have the drawback of implying an apparently discrete boundary in what is 

better understood as a continuous space (Padilla, Castro, et al., 2021). The ellipse stimuli in the present study enclose the 

central 50% and 95% of the underlying probability mass, but the distribution itself is continuous and there is no special 

distinction between a point just inside a contour and just outside a contour. Simultaneously, the ellipse stimuli also have 
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the advantage of consisting of salient, continuous contours that can readily be perceived as shapes, and this may have 

contributed to the slightly better performance observed with ellipses than with scatter stimuli in our study.  

The scatter stimuli we used have in common with other ensemble visualizations the benefits of emphasizing that a 

probability distribution defines the probabilities of different outcomes. Ensemble visualizations have been shown to 

improve understanding of forecasts as probabilistic (Ruginski et al., 2016) and to avoid deterministic construal errors 

(Joslyn & LeClerc, 2012). Other ensemble displays include quantile dot plots (Kay et al., 2016) and animated hypothetical 

outcome plots (Hullman et al., 2015). Ensemble displays might also activate frequency framing, which leads people to 

better understand probabilities (Gigerenzer, 1996). In addition to these advantages, the ensemble visualization we used 

might have some drawbacks; the scatter stimuli used many distinct points that were grouped by color, and they were 

positioned randomly, so perceiving the underlying distinct distributions might have been harder.  

Another concern with the scatter stimuli we used is the overlapping of two or four different distributions. This led to 

regions of the display with a very high density of marks in some stimuli. Several approaches have been developed to 

mitigate overplotting in a 2D context (Ellis & Dix, 2007). We selected the number of samples per distribution in a 

compromise between having enough points to characterize the broader distributions while not suffering too much from 

overplotting with denser distributions. A more sophisticated approach might have led to better performance from 

participants using scatter stimuli. We might have expected the scatter stimuli here to perform better based on the superiority 

of ensemble displays in other contexts, and perhaps a better-designed scatter stimulus would have led to better performance. 

However, the performance advantage of the ellipse stimuli over the scatter stimuli was only apparent in the simple task 

depicting only two distributions, where presumably overlap would be less of an issue. 

In the current experiment, performance with the ellipse stimuli was initially similar to that of the scatter stimuli, but by 

the end of the simple 2-estimate task block, performance with ellipse was better than with scatter. These differences in 

performance after practice could be due to the particularities of our implementations of these two visualizations. More 

research is needed to know if this pattern is generally true for other forms of summary and ensemble displays. Nonetheless, 

our results suggest that practice might provide an opportunity for an otherwise less intuitive visualization to become more 

effective. 

4.5 Individual differences 

In addition to the effects of practice, we observed evidence for stable inter-individual differences in performance. Each 

model included random effects of participant to characterize how a participant’s performance differed from others in the 

same condition. We used a potentially correlated random effect in the simple 2-estimate task block and the complex 4-

estimate task block. We found high correlations between the random effects in simple 2-estimate and complex 4-estimate 

task blocks. These high correlations indicate that participants’ performance relative to those in their condition was stable 

across these blocks. Understanding measurable correlates of these stable individual differences in probabilistic decision-

making (Grounds & Joslyn, 2018) and use of visualized uncertainty (Padilla, Castro, et al., 2021), such as underlying skills 

or dispositional traits, could help us predict who might perform tasks like this better or worse, and it could help us identify 

additional practice or other interventions that might help improve performance. 

4.6 Instructions vs. practice 

The importance of effective instructions and explanations for how to use a visualization has been demonstrated (Boone et 

al., 2019; Fiore et al., 2019; Song et al., 2019). However, in some studies, instructions increased understanding of a 

visualization (as confirmed with a comprehension test) but still did not eliminate errors associated with misinterpretation 
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of that visualization (Boone et al., 2019; Joslyn & LeClerc, 2012). Moreover, trained scientists who receive statistical 

education are shown to misinterpret uncertainty visualizations that are in common use in scientific publications (Belia et 

al., 2005). Taken together, these findings support the view that instruction alone is insufficient to enable people to make 

error-free decisions based on visualized uncertainty.  

The present results point to practice with feedback as a key enabler of effective use of visualized uncertainty. In the 

current experiment, all participants received instructions that explained how to use both the scatter and the ellipse 

visualization types. Despite not having experience using all visualization types, the instructions seemed to be sufficient to 

enable use of the unpracticed visualization type. However, we found that the group who practiced with either visualization 

type showed much faster response times than those who received instructions only.  

5 CONCLUSION 

Practice is an important element of attaining expertise in a task or field, and this is no less the case for uncertainty 

integration tasks. For probabilistic reasoning with visualized bivariate Gaussian distributions, we found that practice-

induced expertise transfers to different visualization types, to different difficulty levels, and to qualitatively different 

contexts and platforms. This transfer was evident in much faster response times with no substantial loss of accuracy. 

Although the particulars of the visualization and of the user interface changed across our experiment, the underlying 

inference task did not. This suggests that practice, with feedback, improved participants’ skill with the underlying 

probabilistic reasoning involved in these tasks, which were limited to a spatial task using ellipse and scatter visualizations. 

It remains an empirical question whether benefits of this practice would extend to other tasks of probabilistic reasoning 

and whether similar practice effects might be observed with other kinds of probabilistic reasoning tasks.  

Communicating uncertainty is critical for empowering people to make well-informed decisions. We hope this work 

inspires designers of tools for conveying uncertainty to consider whether it is possible to provide people an opportunity to 

practice using that tool before they need to use it to make a decision. The findings we report here suggest that practice 

could lead people to make faster, better decisions using visualized uncertainty. 
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