
Real time, cross platform visualizations with zero de-
pendencies for the N-body package REBOUND
Hanno Rein

A peer-reviewed publication in the Journal of Visualization and Interaction (JoVI).

DOI: 10.54337/jovi.v1i1.8312 (the public peer reviews can also be found at this link)

• Submitted: 2024-02-14
• Accepted: 2026-01-22
• Published: 2026-02-02 (version 1)

License and Copyright

This work is licensed under a Creative Commons Attribution 4.0 International (CC-BY 4.0)
license.

All copyrights remain with the authors.

Publisher

Aalborg University Open Publishing
Kroghstræde 1-3
9220 Aalborg Øst
DENMARK
ISSN: 2794-5502

https://journalovi.org/
https://doi.org/10.54337/jovi.v1i1.8312
https://creativecommons.org/licenses/by/4.0/

Visualizations have become an indispensable part of the scientific process. A vibrant ecosystem of visualization tools exists, catering to a wide
variety of di�erent needs. Real-time visualizations of numerical simulations o�er scientists immediate feedback about the status of their simulations
and can also be valuable educational and public outreach tools.

Developing a visualization tool with support for di�erent operating systems, CPU/GPU architectures, and programming languages can be a
challenge. It is common to use one or more UI toolkits or libraries to act as abstraction layers and hide the underlying complexity. Whereas external
libraries greatly simplify the initial programming e�ort, we argue that relying on them introduces new dependencies and problems, such as a higher
barriers to entry for new developers and users, and uncertainty regarding long-term support.

In this paper we present a new approach for real-time visualizations which we have implemented for the N-body package REBOUND (Rein and Liu
2012). We propose to use a web browser to handle GPU accelerated rendering. This enables us to o�er 3D, interactive visualizations of simulations
running natively on all major operating systems. What makes our new approach unique is that we achieve this without the need for any external
libraries. We utilize WebAssembly and emscripten to reuse existing OpenGL visualization code. Using communication via HTTP and a custom built-in
web server, we are able to provide both local and remote real-time visualizations. In addition to the browser based real-time visualization, our
approach o�ers other additional operating modes, including simulations running entirely within the browser, visualizations within jupyter
notebooks, and traditional standalone visualizations using OpenGL. We focus on the implementation in REBOUND but the concepts and ideas
discussed can be applied to many other areas in need of scientific and non-scientific real-time visualizations.

1 Introduction

Visualizations are a crucial part of the scientific process. There are many popular tools to make two or three dimensional graphs such as gnuplot
(Williams and Kelley 2013), matplotlib (Hunter 2007), or yt (Turk et al. 2011) for rendering volumetric and particle data. Many specialized tools
exist as well, for example Williams et al. (2022) describe a novel approach for an interactive user interface for the WorldWide Telescope. The above
examples demonstrate the diversity of visualization needs and the tools that have been developed to serve those needs. However, it would be
impossible to review all the so�ware that is available.

Developing so�ware that involves any sort of graphical interface can be a challenge. This is especially the case if the goal is to provide a tool that
works on di�erent operating systems and supports a variety of graphics hardware. There are two ways to approach the problem of cross-platform
graphics that are commonly employed:

• One can write tailored graphic routines for each platform. This requires significant resources, both for development and maintenance.
Whereas this approach might be an option for large projects (think of a game developed by a large studio), it is typically not within the realm
of possibilities for small scientific so�ware packages. If resources are finite, one might end up with limited support of only a few platforms, or
with some platforms enjoying more features than others. Mobile applications are an example where this approach is o�en used and as a
result iOS and Android versions of the same application do not necessarily share the same features.

• Alternatively, one can rely on a cross-platform libraries, frameworks, or APIs such as QT, Unity, OpenGL, or Vulkan. These make cross-
platform development much more straightforward but at the cost of adding a dependency. Scientific so�ware, in particular if it involves
simulating scientific processes, is mostly distributed as source code because researchers want the ability to study and modify it. Compiling
source code that depends on external libraries into an executable can be a major obstacle for new developers and users alike. Furthermore,
switching from one library to another is not trivial. This can become a problem when external libraries donʼt get updated or become
deprecated. As an example, many games and visualization tools depend on OpenGL which is now considered deprecated on MacOS.
Furthermore, for commercial graphic toolkits such as Unity, license agreements might change at any time. In short, the development is now
highly dependent on whichever external component was chosen for the project.

This paper presents an alternative approach which we think has several important advantages over the two approaches above, especially for
small scientific projects:

Real time, cross platform visualizations with zero dependencies for the N-
body package REBOUND

Hanno Rein Department of Physical and Environmental Sciences, University of Toronto

Department of Astronomy and Astrophysics, University of Toronto

Department of Computer Science, University of Toronto

AUTHOR AFFILIATIONS



Abstract

Background

Current Challenges

Proposed Solution

Materials, License, Conflicts

https://www.qt.io/
https://www.qt.io/
https://unity.com/
https://unity.com/
https://opengl.org/
https://opengl.org/
https://vulkan.org/
https://vulkan.org/
https://www.theguardian.com/games/2023/sep/12/unity-engine-fees-backlash-response
https://www.theguardian.com/games/2023/sep/12/unity-engine-fees-backlash-response
https://www.journalovi.org/2024-rein-rebound/#fn1
mailto:hanno.rein@utoronto.ca
https://orcid.org/0000-0003-1927-731X
https://orcid.org/0000-0003-1927-731X
https://www.journalovi.org/2024-rein-rebound/#fn1

• Dependency free. There are no external libraries required.
• Cross platform. Any platform that has a reasonably modern browser can be used to render visualizations. This includes both desktop and

mobile operating systems: Linux, MacOS, Windows, iOS, Android.
• Remote visualizations. Using port-forwarding via SSH, one can run a simulation on one computer, say a node of a computing cluster, and

visualize it in real-time on another workstation.
• Future-proof. Because the approach relies on open web technologies that are supported by all major browsers, we find it likely that this

approach will continue to work for many years to come without requiring much maintenance in the same way one can still view websites
that were developed decades ago.

In the following sections, we will describe how this approach works in detail.

2 Operating modes

A key feature of our approach is its flexibility. Figure 1 shows the three di�erent operating modes that are possible. Modules with the same colour
in the figure make use of mostly the same source code. The high level of code-reuse is possible because C/C++ code can be compiled with
emscripten to WebAssembly which can then be interpreted by a web browser at almost native speed. In summary, the di�erent modes work as
follows:

1. In the standalone mode, the visualization is making use of OpenGL. This traditional approach has been used by both visualization tools and
games for decades. It requires no browser, but in addition to a C compiler, OpenGL APIs need to be available, and GLFW libraries need to be
installed. This mode provides the best performance.

2. In the hybrid mode, when a REBOUND simulation is started, a web server is automatically started on a separate thread. The web server
serves both visualization code and simulation data to a web browser. The visualization is then done in the browser. The server and browser
do not need to run on the same machine. This mode does not require any external libraries to be installed for compilation. It provides a low
entry barrier for developers and users (it just works). This mode constitutes the novel visualization concept that we describe in this paper.

3. In the browser mode, not only the visualization is handled by the browser but also the simulation itself. This mode requires no external
libraries nor any server. The emscripten compiler is used to bundle everything that is needed by the browser (HTML, CSS, JavaScript,
WebAssembly, image data) into one single HTML file that can then be served as a static website or directly be opened locally with a web
browser.

1

Figure 1: An overview of the three di�erent operating modes. In the standalone mode (le�), the visualization is provided by OpenGL. In the hybrid mode
(middle), the browser streams data from a web server which is then visualized using WebGL. In the browser mode (right), the simulation and the

https://www.journalovi.org/2024-rein-rebound/#fn1
https://www.journalovi.org/2024-rein-rebound/#fn1
https://www.journalovi.org/2024-rein-rebound/#fn1

Both the standalone and the browser mode have been employed widely by other tools. The innovation of this paper is the hybrid mode which in
many ways represents the best of both worlds. In the case of REBOUND, a user simply downloads the source code and compiles it using any C
compiler . Because there are no dependencies on external libraries, this does not require any configure scripts, installing system-wise third party
packages, setting up environment variables, or other complicated steps. The user can setup or run a simulation without even considering whether
a visualization might be useful. If the user at some point decides that it might be useful, then they can simply open a web browser and point it
towards the simulationʼs dormant web server to start visualizing the simulation and get immediate visual feedback regarding the simulation.

Because we already have the visualization code running in a web browser, the additional task of running entire simulations in the web browser is
straightforward. Figure 2 shows an example of REBOUNDʼs browser mode. A�er clicking on the figure (this only works if you are reading the HTML
version of this article), an N-body simulation of a self-gravitating disk can be seen. The simulation is running in real-time in the browser. The
rendering is using WebGL. The console output is also shown. The visualization is interactive: drag to rotate, shi�+drag or scroll to zoom, press the
space bar to pause. The figure is included in this document using an <iframe> HTML tag. A single file includes the bundled up HTML, CSS,
JavaScript, WebAssembly as well as some small image assets and is less than 500 kB in size. For comparison, a simple screenshot of the
simulation in PNG format would be 200 kB in size . The REBOUND documentation makes extensive use of the browser mode, o�ering users the
ability to run all examples directly in the browser and thus showcasing the ability of the so�ware package. Note that the exact same simulation
can be compiled with a normal C compiler and run in the stand-alone mode showing the same visualization but using OpenGL instead of WebGL.

3 Web Browser, WebGL, WebAssembly

We rely on a web browser for all graphic related functionality in the hybrid and browser modes. There are di�erent ways to render visualizations
within a browser. For example, one can use HTML, CSS and JavaScript. A popular JavaScript visualization library is D3.js.

In recent years, browsers have also gained features that allow them to e�iciently render high quality graphics and make use of GPU acceleration.
Although the performance is not (yet) on par with native desktop implementations, it comes very close and is su�icient for most applications (see
also our performance tests below). We make use of these features and write GPU accelerated visualizations in the browser using WebGL, a
JavaScript API that provides similar functionality to OpenGL. All major browsers support WebGL version 2.

We also make use WebAssembly, a binary instruction format that can be executed by a browserʼs virtual machine at almost native speeds. Using
the emscripten compiler toolchain, one can compile existing C or C++ code to WebAssembly. Emscripten also converts OpenGL to WebGL so that
we donʼt need to explicitly write WebGL code. With minor adjustments, many games and visualization tools that use OpenGL on a desktop can
thus also be used in a browser. Similar to JavaScript libraries, programs in WebAssembly format are simply static files and donʼt require the user
to install anything, avoiding any of the issues that come with external libraries. There are several advantages of focusing on WebAssembly and
emscripten for the in-browser rendering code.

First, we can reuse our existing C code that already uses OpenGL for rendering, with only minimal changes (see Section 7). This makes it easy for

visualization are handled solely within the browser. Modules with the same colour (green, red, blue) make use of the same source code.

2

3

Console output:

REBOUND v4.4.8

Click to start REBOUND simulation.

Figure 2: This figure shows an interactive, real-time visualization of a self-gravitating disk where the equations of motion are being integrated with the N-
body code REBOUND. To achieve this, REBOUND has been compiled with emscripten to WebAssembly allowing it run in the browser. This is what we
refer to as the browser mode.

https://www.journalovi.org/2024-rein-rebound/#fn2
https://www.journalovi.org/2024-rein-rebound/#fn2
https://www.journalovi.org/2024-rein-rebound/#fn3
https://www.journalovi.org/2024-rein-rebound/#fn3
https://rebound.hanno-rein.de/c_examples/selfgravity_disc/
https://rebound.hanno-rein.de/c_examples/selfgravity_disc/
https://d3js.org/
https://d3js.org/
https://www.khronos.org/webgl/
https://www.khronos.org/webgl/
https://www.khronos.org/blog/webgl-2-achieves-pervasive-support-from-all-major-web-browsers
https://www.khronos.org/blog/webgl-2-achieves-pervasive-support-from-all-major-web-browsers
https://webassembly.org/
https://webassembly.org/
https://emscripten.org/
https://emscripten.org/
https://www.journalovi.org/2024-rein-rebound/#fn2
https://www.journalovi.org/2024-rein-rebound/#fn3

https://www.journalovi.org/2024-rein-rebound/#fn4
https://www.journalovi.org/2024-rein-rebound/#fn4
https://www.journalovi.org/2024-rein-rebound/#fn4

https://github.com/hannorein/rebound/blob/4a0bdb056f684c397a10598d270f52df3bce883c/src/server.c
https://github.com/hannorein/rebound/blob/4a0bdb056f684c397a10598d270f52df3bce883c/src/server.c
https://www.journalovi.org/2024-rein-rebound/#fn5
https://www.journalovi.org/2024-rein-rebound/#fn5
https://rebound.hanno-rein.de/c_examples/animation_solar_system/
https://rebound.hanno-rein.de/c_examples/animation_solar_system/
https://github.com/hannorein/rebound/blob/4a0bdb056f684c397a10598d270f52df3bce883c/rebound/simulation.py#L214
https://github.com/hannorein/rebound/blob/4a0bdb056f684c397a10598d270f52df3bce883c/rebound/simulation.py#L214
https://github.com/hannorein/rebound/blob/4a0bdb056f684c397a10598d270f52df3bce883c/src/display.c#L1032
https://github.com/hannorein/rebound/blob/4a0bdb056f684c397a10598d270f52df3bce883c/src/display.c#L1032
https://github.com/hannorein/rebound/blob/4a0bdb056f684c397a10598d270f52df3bce883c/src/display.c#L1087
https://github.com/hannorein/rebound/blob/4a0bdb056f684c397a10598d270f52df3bce883c/src/display.c#L1087
https://github.com/hannorein/rebound/blob/4a0bdb056f684c397a10598d270f52df3bce883c/src/display.c#L1075
https://github.com/hannorein/rebound/blob/4a0bdb056f684c397a10598d270f52df3bce883c/src/display.c#L1075
https://www.journalovi.org/2024-rein-rebound/#fn6
https://www.journalovi.org/2024-rein-rebound/#fn6
https://github.com/hannorein/rebound/blob/4a0bdb056f684c397a10598d270f52df3bce883c/src/display.c#L135
https://github.com/hannorein/rebound/blob/4a0bdb056f684c397a10598d270f52df3bce883c/src/display.c#L135
https://github.com/hannorein/rebound/blob/4a0bdb056f684c397a10598d270f52df3bce883c/src/display.c#L1718
https://github.com/hannorein/rebound/blob/4a0bdb056f684c397a10598d270f52df3bce883c/src/display.c#L1718
https://github.com/hannorein/rebound/blob/4a0bdb056f684c397a10598d270f52df3bce883c/src/server.c
https://github.com/hannorein/rebound/blob/4a0bdb056f684c397a10598d270f52df3bce883c/src/server.c
https://github.com/hannorein/rebound/blob/4a0bdb056f684c397a10598d270f52df3bce883c/src/server.c#L384
https://github.com/hannorein/rebound/blob/4a0bdb056f684c397a10598d270f52df3bce883c/src/server.c#L384
https://github.com/hannorein/rebound/blob/4a0bdb056f684c397a10598d270f52df3bce883c/src/server.c#L320
https://github.com/hannorein/rebound/blob/4a0bdb056f684c397a10598d270f52df3bce883c/src/server.c#L320
https://github.com/hannorein/rebound/blob/4a0bdb056f684c397a10598d270f52df3bce883c/src/server.c#L709
https://github.com/hannorein/rebound/blob/4a0bdb056f684c397a10598d270f52df3bce883c/src/server.c#L709
https://github.com/hannorein/rebound/blob/4a0bdb056f684c397a10598d270f52df3bce883c/src/server.c#L215
https://github.com/hannorein/rebound/blob/4a0bdb056f684c397a10598d270f52df3bce883c/src/server.c#L215
https://www.journalovi.org/2024-rein-rebound/#fn5
https://www.journalovi.org/2024-rein-rebound/#fn6

updated particle data every timestep, but then we would need to handle special cases, for example when the particle number changes which
involves reallocating various arrays both on the CPU and GPU side. For other simulations, e.g. a hydrodynamic simulation with a fixed size
grid, the latter option would achieve better performance.

• While the simulation is getting updated during a timestep, it locks a Mutex such that the server thread doesnʼt send a partially updated
simulation. That could lead to race conditions and memory corruption.

• On the browser side, we create a new simulation and visualize it the same way as we do for the browser mode. However, instead of
initializing the simulation with particle data directly in the browser, we request a Simulationarchive from the server, then use that to update
the in-browser simulation. Once done, we pause for a few milliseconds before requesting another Simulationarchive. The visualization gets
updates in the next rendering call.

At this point, all the components in order for the hybrid mode to work are in place. The next steps are to polish the HTML file that emscripten uses
as a template so that it can show some status information, render any onscreen text, and if desired send user interactions back to the server.
There are also various failure modes that need to be handled such as a failed attempt to connect the server .

8 Conclusions

In this paper, we have presented a flexible framework to add real-time visualization to a scientific simulation package. Our approach provides GPU
accelerated visualizations on all major operating systems with zero dependencies on external libraries. We achieve this by relying on a web
browser for rendering, and implementing a web server from scratch. Our approach is compatible with modern web-based environments such as
Jupyter notebooks and also allows interactive visualizations to be embedded in static websites such as scientific publications, documentation,
and blogs.

A reference implementation of our approach is provided in the REBOUND N-body package (Rein and Liu 2012). The most recent development
version is available on GitHub. The version of REBOUND that was used for this paper (4.4.10) is also available as an archive on Zenodo. We were
able to reuse the majority of the rendering code from the existing OpenGL based visualization in REBOUND by converting it to WebGL and
WebAssembly with emscripten. We believe our approach is general enough that it will be applicable to a wide variety of other so�ware packages
which currently lack the possibility of real-time visualizations and we provide a step by step guide to get started.

There are many possibilities for further improvements. We would like to highlight one which would make this framework even more accessible.
Pyodide (Droettboom et al. 2021) is a port of CPython to WebAssembly which makes it possible to install and run Python packages in the browser.
In contrast to the browser mode discussed above, with Pyodide a user can interpret python code interactively directly in the browser. REBOUND
already is available as a Pyodide package and one can thus code up and run a custom REBOUND simulation entirely from within the browser.
However, the visualization framework presented in this paper still has to be ported. The main di�iculty is that communication between the
visualization thread and the simulation thread needs to be changed (we can no longer communicate over network ports) and the support of
threads is somewhat restricted in WebAssembly (UI changes need to come from one thread and thus needs to be shared with the python console).

Authorship

Hanno Rein: Conceptualization, Implementation, Writing.

License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Conflict of Interest

The author declares that there are no other competing interests.

References

Droettboom, Michael, Roman Yurchak, Hood Chatham, Dexter Chua, Marc Abramowitz, casatir, Jason Sta�ord, et al. 2021. “Pyodide/Pyodide:”
Zenodo. https://doi.org/10.5281/zenodo.5156931.

Hunter, J. D. 2007. “Matplotlib: A 2D Graphics Environment.” Computing in Science & Engineering 9 (3): 90–95. https://doi.org/10.1109/
MCSE.2007.55.

Kluyver, Thomas, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger, Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, et al. 2016.
“Jupyter Notebooks—a Publishing Format for Reproducible Computational Workflows.” Positioning and Power in Academic Publishing:
Players, Agents and Agendas, 87.

Rein, H., and S. -F. Liu. 2012. “REBOUND: an open-source multi-purpose N-body code for collisional dynamics” 537 (January): A128. https://
doi.org/10.1051/0004-6361/201118085.

Rein, H., and D. Tamayo. 2017. “A New Paradigm for Reproducing and Analysing n-Body Simulations of Planetary Systems.” MNRAS 467
(January): 2377–83. https://doi.org/10.1093/mnras/stx232.

7

https://github.com/hannorein/rebound/blob/4a0bdb056f684c397a10598d270f52df3bce883c/src/rebound.c#L850
https://github.com/hannorein/rebound/blob/4a0bdb056f684c397a10598d270f52df3bce883c/src/rebound.c#L850
https://github.com/hannorein/rebound/blob/4a0bdb056f684c397a10598d270f52df3bce883c/web_client/problem.c#L166
https://github.com/hannorein/rebound/blob/4a0bdb056f684c397a10598d270f52df3bce883c/web_client/problem.c#L166
https://github.com/hannorein/rebound/blob/4a0bdb056f684c397a10598d270f52df3bce883c/web_client/problem.c#L150
https://github.com/hannorein/rebound/blob/4a0bdb056f684c397a10598d270f52df3bce883c/web_client/problem.c#L150
https://github.com/hannorein/rebound/blob/4a0bdb056f684c397a10598d270f52df3bce883c/web_client/problem.c#L90
https://github.com/hannorein/rebound/blob/4a0bdb056f684c397a10598d270f52df3bce883c/web_client/problem.c#L90
https://github.com/hannorein/rebound/blob/4a0bdb056f684c397a10598d270f52df3bce883c/web_client/shell_rebound_webgl.html
https://github.com/hannorein/rebound/blob/4a0bdb056f684c397a10598d270f52df3bce883c/web_client/shell_rebound_webgl.html
https://github.com/hannorein/rebound/blob/4a0bdb056f684c397a10598d270f52df3bce883c/web_client/problem.c#L58
https://github.com/hannorein/rebound/blob/4a0bdb056f684c397a10598d270f52df3bce883c/web_client/problem.c#L58
https://github.com/hannorein/rebound/blob/4a0bdb056f684c397a10598d270f52df3bce883c/src/server.c#L331
https://github.com/hannorein/rebound/blob/4a0bdb056f684c397a10598d270f52df3bce883c/src/server.c#L331
https://www.journalovi.org/2024-rein-rebound/#fn7
https://www.journalovi.org/2024-rein-rebound/#fn7
https://github.com/hannorein/rebound
https://github.com/hannorein/rebound
https://zenodo.org/records/15784767
https://zenodo.org/records/15784767
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.5156931
https://doi.org/10.5281/zenodo.5156931
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1051/0004-6361/201118085
https://doi.org/10.1051/0004-6361/201118085
https://doi.org/10.1051/0004-6361/201118085
https://doi.org/10.1051/0004-6361/201118085
https://doi.org/10.1093/mnras/stx232
https://doi.org/10.1093/mnras/stx232
https://www.journalovi.org/2024-rein-rebound/#fn7

(January): 2377–83. https://doi.org/10.1093/mnras/stx232
Rein, H., D. Tamayo, S.-F. Liu, L. Winkler, P. Bartram, A. Silburt, G. Brown, et al. 2025. “Hannorein/Rebound: 4.4.10.” Zenodo. https://

doi.org/10.5281/zenodo.15784767.
Turk, M. J., B. D. Smith, J. S. Oishi, S. Skory, S. W. Skillman, T. Abel, and M. L. Norman. 2011. “yt: A Multi-code Analysis Toolkit for Astrophysical

Simulation Data.” The Astrophysical Journal Supplement Series 192 (January): 9. https://doi.org/10.1088/0067-0049/192/1/9.
Williams, Thomas, and Colin Kelley. 2013. “Gnuplot 4.6: An Interactive Plotting Program.” http://gnuplot.sourceforge.net/.
Williams, Jonathan Carifio, Henrik Norman, and A. David Weigel. 2022. “A Novel JupyterLab User Experience for Interactive Data Visualization.”

arXiv e-Prints, December, arXiv:2212.03907. https://doi.org/10.48550/arXiv.2212.03907.

Footnotes

1. A WebAssembly compiler is required.

https://doi.org/10.1093/mnras/stx232
https://doi.org/10.1093/mnras/stx232
https://doi.org/10.5281/zenodo.15784767
https://doi.org/10.5281/zenodo.15784767
https://doi.org/10.5281/zenodo.15784767
https://doi.org/10.5281/zenodo.15784767
https://doi.org/10.1088/0067-0049/192/1/9
https://doi.org/10.1088/0067-0049/192/1/9
http://gnuplot.sourceforge.net/
http://gnuplot.sourceforge.net/
https://doi.org/10.48550/arXiv.2212.03907
https://doi.org/10.48550/arXiv.2212.03907

