
JoVI	review	snapshot	created	at	Feb	02,	2026	13:05.

Issue	#12	(open):	[REVIEW]	0-dependency	REBOUND	visualizations

@sharponlooker	on
May	07,	2025	19:08: [opened]

@sharponlooker	on
May	07,	2025	19:08:

Conflicts	of	interest

	I	declare	that	I	have	no	known	conflicts	of	interest	with	the	authors.

Reviewed	version

6d40ae2

Review

This	paper's	claims	are	spot-on	regarding	visualization	issues	with	dependency	complexity	and	lifecycle
management.	Its	web	standards-based	proposed	solution	is	extremely	adequate	for	solving	the
mentioned	issues	and	beyond,	with	good	chances	for	it	to	be	extrapolated	to	additional	use	cases	within
the	N-body	simulation	field	as	well	as	many	other	scientific	visualizations.

As	a	longtime	follower	of,	and	occasional	user	of	REBOUND,	I	have	personally	confronted	some	of	the
dependency	issues	presented	in	the	paper.	Every	action	taken	at	the	package	level	to	reduce	this
complexity	improves	the	user	experience.

In	order	to	validate	the	methods	and	claims,	I	reran	my	most	common	use	case	for	REBOUND,	simple
customized	Solar	system	orbital	plots,	and	it	was	exciting	to	be	able	to	fully	experience	the	3D-
visualization	in	a	short	while,	with	just	a	few	hurdles	unrelated	to	REBOUND	as	such.	For	the	sake	of
completeness:	my	test	was	a	"hybrid	mode"	run	of	a	rendering	of	Sednoid	orbits,	the	simulation	and	web
server	threads	running	on	a	Linux	docker	instance	running	ipython,	the	web	browser	rendering
happening	on	an	MS	Windows	host.

I	have	only	a	few	comments	about	the	paper,	and	except	for	number	1,	they	can	be	considered	minor	or
improvement	suggestions	and	should	be	weighed	against	affecting	the	paper's	conciseness:

1	-	I	understand	the	reasoning	behind	the	homebrewn	minimalist	webserver	and	the	benefits	it
provides,	but	it	should	still	be	considered	a	possible	attack	vector,	especially	in	the	"hybrid	mode"	where
it	may	be	being	exposed	on	any	kind	of	network.	I	believe	it	would	suffice	with	warnings	to	users	that
this	component	would	need	to	be	secured	in	use	cases	and	setups	that	may	exceed	the	scope	expected	by
the	author(s).

2	-	I	would	like	to	posit	that	the	claim	that	this	is	a	zero-dependency	solution	is	reliant	on	WebAssembly
truly	remaining	as	a	unique	standard	in	the	long	run	and	its	continued	adoption	and	support	by
browsers.	For	instance,	this	manifests	itself	in	the	list	of	advantages	at	the	end	of	the	Introduction
section,	where	the	last	bullet	(future-proof)	uses	the	word	"likely".

3	-	In	section	2,	after	the	list	of	operation	modes,	the	following	paragraph	mentions	the	use	of	a	C
compiler	in	a	context	that	makes	it	sound	like	a	mandatory	step	for	every	use	case.	As	suggested	in	later
sections,	the	availability	of	a	Python	interface	makes	that	a	non-issue	in	other	situations.

4	-	Both	in	section	3	("we	can	reuse	our	existing	C	code	that	uses	OpenGL	for	rendering	with	minimal
changes_")	and	section	6	("We	were	able	to	reuse	_the	majority	of	the	rendering	code")	hint	at	some

https://github.com/journalovi/2024-rein-rebound/issues/12
https://github.com/sharponlooker
https://github.com/sharponlooker


tweaks	that	had	to	be	applied	to	existing	codebases.	Is	it	possible	to	have	a	footnote	or	short	appendix
summarizing	what	kind	of	changes	were	needed?

5	-	It	would	be	interesting	to	have	a	brief	paragraph	about	a	roadmap	or	future	planned	improvements,
if	there	are	any	already,	for	the	paper's	proposed	solution.	Even	perhaps	a	commentary	on	whether	the
solution	already	applies	to	REBOUND+	(if	I	have	understood	it	right,	REBOUND+	augments	simulations
with	non-gravitational	forces).

Very	minor	issues	&	typos

6	-	Figure	1,	I	think	the	operating	modes	should	be	labeled	in	the	graphic	itself	as	well,	so	that	the	figure
is	self-contained	even	without	the	caption.

7	-	Figure	1,	it	may	be	personal	taste,	but	the	user/client	layer	is	usually	at	the	top	and	for	me	the
REBOUND	simulation	thread	would	better	appear	like	a	backend	engine	at	the	bottom.	I	would	not	mind
if	the	whole	figure	is	inverted	upside	down.

8	-	Typo	section	1,	bullet	1,	"tailor"	should	be	"tailored".

9	-	Typo	section	2,	above	fig	2,	"show	case"	should	be	"showcase".

10	-	Typo	section	4,	third	paragraph,	"back	end"	should	be	"backend".

11	-	Typo	section	4,	last	paragraph,	"facility"	should	be	"facilitate".

12	-	Section	5,	"with	python	interface"	would	read	better	as	"with	a	python	interface".

Openness/Transparency

No	issues

Submission	categories

	Registered	Report
	Replication	Study
	Empirical	Research	-	Quantitative
	Empirical	Research	-	Qualitative
	Systems	or	design	research
	Commentary
	Systematic	Literature	Review

Suggested	outcome

Endorse:	I	am	willing	to	endorse	this	paper,	with	at	most	minor	copyediting.

Requested	changes

Issue	1,	6	and	8-12

ORCID

No	response

@floe	on
Jun	06,	2025	09:47: Many	thanks	for	your	review,	@sharponlooker	!	Once	the	other	reviews	are	in,	I	will	compile	a	meta-

review	(but	I	can	already	invite	@hannorein	to	have	a	look	at	your	comments	and	see	if	they	can	be
easily	addressed,	most	of	them	probably	can).

@hannorein	on
Jul	14,	2025	14:44: Thank	you	@sharponlooker	for	the	nice	review!	I	have	addressed	all	the	issues	you	brought	up.

Specifically:

https://github.com/floe
https://github.com/hannorein


1	-	I	understand	the	reasoning	behind	the	homebrewn	minimalist	webserver	and	the	benefits
it	provides,	but	it	should	still	be	considered	a	possible	attack	vector,	especially	in	the	"hybrid
mode"	where	it	may	be	being	exposed	on	any	kind	of	network.	I	believe	it	would	suffice	with
warnings	to	users	that	this	component	would	need	to	be	secured	in	use	cases	and	setups	that
may	exceed	the	scope	expected	by	the	author(s).

There	was	already	a	warning	in	the	documentation.	But	I've	made	it	more	prominent	with	a	yellow
annotation:

I've	also	added	a	"not	secure"	warning	to	the	console	output	whenever	a	port	has	been	opened.

In	practice,	I	don't	think	this	is	an	issue.	These	days,	almost	all	operating	systems	block	access	to	any	host
other	than	localhost	by	default.

2	-	I	would	like	to	posit	that	the	claim	that	this	is	a	zero-dependency	solution	is	reliant	on
WebAssembly	truly	remaining	as	a	unique	standard	in	the	long	run	and	its	continued
adoption	and	support	by	browsers.	For	instance,	this	manifests	itself	in	the	list	of	advantages
at	the	end	of	the	Introduction	section,	where	the	last	bullet	(future-proof)	uses	the	word
"likely".

I	have	added	a	footnote	clarifying	that	a	WebAssembly	compiler	is	needed.

3	-	In	section	2,	after	the	list	of	operation	modes,	the	following	paragraph	mentions	the	use	of
a	C	compiler	in	a	context	that	makes	it	sound	like	a	mandatory	step	for	every	use	case.	As
suggested	in	later	sections,	the	availability	of	a	Python	interface	makes	that	a	non-issue	in
other	situations.

I	have	added	another	footnote	clarifying	that	a	compiler	is	not	needed	for	the	precompiled	python
package.

4	-	Both	in	section	3	("we	can	reuse	our	existing	C	code	that	uses	OpenGL	for	rendering	with
minimal	changes")	and	section	6	("We	were	able	to	reuse	the	majority	of	the	rendering	code")
hint	at	some	tweaks	that	had	to	be	applied	to	existing	codebases.	Is	it	possible	to	have	a
footnote	or	short	appendix	summarizing	what	kind	of	changes	were	needed?

Good	point.	The	main	things	I	had	to	change	was	the	run	loop	(i.e.	how	and	when	new	frames	are
requested)	and	how	text	is	rendered	(it	makes	sense	to	not	render	text	via	OpenGL	but	let	the	browser	do
it).	I've	added	some	details.

5	-	It	would	be	interesting	to	have	a	brief	paragraph	about	a	roadmap	or	future	planned
improvements,	if	there	are	any	already,	for	the	paper's	proposed	solution.	Even	perhaps	a
commentary	on	whether	the	solution	already	applies	to	REBOUND+	(if	I	have	understood	it
right,	REBOUND+	augments	simulations	with	non-gravitational	forces).

Also	a	good	point.	The	main	feature	I	would	like	to	see	added	in	the	future	is	a	port	of	the	visualization	to

https://github.com/hannorein/rebound/commit/cf7febcd67b19651187be185811e7f2b2cef8bd7
https://github.com/journalovi/2024-rein-rebound/commit/110400bd9c7fcfa5cfb10915d294b28835f10a91
https://github.com/journalovi/2024-rein-rebound/commit/0018c734297232c4bba49e7236f0dd8b84fae4a3
https://github.com/journalovi/2024-rein-rebound/commit/3267ea1160bb348ceb7ac24f633872a435942b16


pyodide.	This	way	one	could	run	everything	from	within	the	browser	interactively.	I've	added	a	section
at	the	end	discussion	this	and	some	of	the	challenges	associated	with	it.

Very	minor	issues	&	typos	6	-	Figure	1,	I	think	the	operating	modes	should	be	labeled	in	the
graphic	itself	as	well,	so	that	the	figure	is	self-contained	even	without	the	caption.

This	has	been	changed.

7	-	Figure	1,	it	may	be	personal	taste,	but	the	user/client	layer	is	usually	at	the	top	and	for	me
the	REBOUND	simulation	thread	would	better	appear	like	a	backend	engine	at	the	bottom.	I
would	not	mind	if	the	whole	figure	is	inverted	upside	down.

I	have	decided	not	to	flip	the	chart.

All	the	other	typos	have	been	corrected.

@floe,	please	let	me	know	if	there	is	anything	else	I	should	do	to	address	the	review.

Thank	you	to	both	of	you!

@sharponlooker	on
Jul	31,	2025	18:17: Sorry	for	the	delay,	your	reply	came	in	the	midst	of	my	vacation	trip	;-)	I	am	satisfied	with	the	changes

and	additions	and	endorse	the	paper	in	its	current	version.	I	suggested	a	minor	legibility	improvement	to
one	of	the	changes	in	the	form	of	a	pull	request.

@hannorein	on
Sep	06,	2025	21:30: Completed	with	merge	of	#13.

@hannorein	on
Sep	06,	2025	21:30: [closed]

@floe	on
Oct	29,	2025	14:52: Reopening	to	keep	reviews	visible	on	main	page.

	

https://github.com/journalovi/2024-rein-rebound/commit/8d22e4f489dce6aff2633d22f8b6376636077c9a
https://github.com/journalovi/2024-rein-rebound/commit/c09c15d58e60747f11bba0f032304c693579bd73
file:///home/floe/src/jovi_snapshot.git/journalovi/2024-rein-rebound/reviews/247699de91b4f2d412c4df92e16fa447a92ffbcc
https://github.com/sharponlooker
https://github.com/hannorein
https://github.com/journalovi/2024-rein-rebound/issues/13
https://github.com/hannorein
https://github.com/floe

