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Scatterplots are a common tool for exploring multidimensional datasets, especially in the form of scatterplot matrices (SPLOMs). However, scatterplots

suffer from overplotting when categorical variables are mapped to one or two axes, or the same continuous variable is used for both axes. Previous

methods such as histograms or violin plots use aggregation, which makes brushing and linking difficult.

We propose gatherplots, an extension of scatterplots designed to manage the overplotting problem. Gatherplots are a form of unit visualization, which

avoid aggregation and maintain the identity of individual objects to ease visual perception. In gatherplots, every visual mark that maps to the same position

coalesces to form a packed entity, thereby making it easier to see the overview of data groupings. The size and aspect ratio of marks can also be changed

dynamically to make it easier to compare the composition of different groups. In the case of a categorical variable vs. a categorical variable, we propose a

heuristic to decide bin sizes for optimal space usage. Results from a crowdsourced user study show that gatherplots enable people to assess data

distribution more correctly than when using jittered scatterplots.

Source code for Gatherplots can be found at https://github.com/intuinno/gatherplot. Research materials associated with the crowdsourced user study can

be found on OSF at https://osf.io/bk9cx/.

We conducted a crowdsourced user study on Amazon Mechanical Turk involving participants drawn from the general population. We collected completion

time, accuracy, and confidence for five different retrieval, ranking, and comparison tasks under four conditions: scatterplots with jittering, gatherplots with

absolute mode, gatherplots with normalized mode, and gatherplots with a toggle to switch between absolute and normalized mode.

Data collected from the crowdsourced survey were analyzed with respect to the accuracy (correct or incorrect), time spent, and confidence of estimation.

Based on our hypotheses, we analyzed the different modes of layout for each type of question: retrieve value, absolute value task, and relative value task.

Gatherplots outperform jittering for accuracy as well as for the subjective confidence measure.

We implemented a web-based demonstration of Gatherplots using D3 as well as using Observable JS in this article.

Beyond the embedded demonstration in this article, you can also find a live demo of Gatherplots at https://gatherplot.firebaseapp.com/.
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Figure 1: Cars dataset. Gatherplots showing a dataset related to cars, yielding overplotting in normal scatterplots. The gatherplot in 1 (a) shows Cylinders

(categorical) vs. MPG (continuous), highlighting the overall distribution of MPG values of cars with different cylinders. The brackets on the X-axis are used to

indicate that the interval within the brackets represent the same value in the data. The gatherplot in 1 (b) shows Cylinders  (categorical) vs.  Origin

(categorical), partitioning the graphical axes into intervals and packing points into groups for each interval. In 1 (c), both X-axis and Y-axis show the same

continuous variable (MPG). All these cases would have caused overplotting for a scatterplot, resulting in dot-shaped or line-shaped point patterns where

individual points cannot be identified.

1 Introduction

Scatterplots—one of the most common types of statistical graphics (Cleveland and McGill 1988; Elmqvist, Dragicevic, and Fekete 2008; Utts

1996)—are often used to visualize two continuous variables using visual marks mapped to a two-dimensional Cartesian space, where the color,

size, and shape of the marks can represent additional dimensions. It can also be used for exploring multidimensional datasets in the form of

scatterplot matrices (SPLOM), where all the possible combinations of axes are presented in table form. However, scatterplots are so-called

overlapping visualizations (Fekete and Plaisant 2002) in that the visual marks representing individual data points may begin to overlap each

other in screen space when the marks are large, when there is insufficient screen space to fit all the data at the desired resolution, or simply

when several data points share the same value. Furthermore, real-world multidimensional datasets often contain categorical variables, such as

nominal variables or discrete data dimensions with a small domain, which lead to many data points being mapped to the exact same screen

position. This kind of overlap is known as overplotting (or overdrawing) in visualization, and is problematic because it may lead to data points

being entirely hidden by other points, which in turn may lead to the viewer making incorrect assessments of the data. As can be seen in Figure 2,

there are three situations for mapping variables to axes in scatterplots when overplotting is inevitable:

Plotting categorical vs. continuous variables gives rise to line patterns (Figure 2(a));

Plotting categorical vs. categorical variables gives rise to single dot patterns (Figure 2(b)); and

Plotting the same continuous variable on both axes gives rise to diagonal line patterns (Figure 2(c)).

(c) MPG vs. MPG.
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Several approaches have been proposed to address this problem (Ellis and Dix 2007), the most prominent being transparency, jittering, and

clustering techniques. The first, changing transparency, does not so much address the problem as sidestep it by making the visual marks semi-

transparent so that an accumulation of overlapping points are still visible. However, this does not scale for large datasets, and also causes

blending issues if color is used to encode additional variables. Jittering perturbs visual marks using a random displacement (Trutschl, Grinstein,

and Cvek 2003) so that no mark falls on the exact same screen location as any other mark, but this approach is still prone to overplotting for

large data. It also introduces distortion that is not aptly communicated by the scatterplot since marks will no longer be placed at their true

location on the Cartesian space. Other approaches still attempt to organize overlapping marks into visual groups that summarize their

distribution, such as histograms, violin plots, and kernel density estimation (KDE) plots (Fua, Ward, and Rundensteiner 1999; Mayorga and

Gleicher 2013; Im, McGuffin, and Leung 2013; Silverman 1986). However, this comes at the cost of losing the identity of individual points, which

can be problematic when filtering or searching; e.g, brushing data points is difficult in histograms (Im, McGuffin, and Leung 2013).

In this paper, we propose the concept of gathering as an alternative to scattering and jittering, and then show how we can use this visual

transformation to define a novel visualization technique called a gatherplot. The gatherplot is an instance of a recently recognized family of

visualization techniques called unit visualizations (Park et al. 2018) that maintain a strict mapping between every data item and its unique visual

mark, improving the understandability over aggregated representations as well as enabling more direct interactions. Gathering is a

generalization of the linear mapping used by scatterplots, and works by first partitioning the graphical axis into segments based on the data

dimension and then organizing points into packed groups for each segment to avoid overplotting. This means that the gather operation relaxes

the continuous spatial mapping commonly used for a graphical axis; instead, each discrete segment occupies a certain interval of screen space

that maps to the same data value. This is communicated using graphical brackets on the axis that shows the value or interval for each segment

(Figure 1(b)).

The contributions of our paper are the following: (1) the gatherplot technique that applies the gather operation to scatterplots to mitigate

overplotting; and (2) results from a crowdsourced graphical perception study on the effectiveness of gatherplots.

2 Background

Scatterplots are classic statistical data graphics with many design variations to address challenges of scale, complexity, and specific tasks

(Sarikaya and Gleicher 2018). Our goal with gatherplots is to generalize scatterplots to a representation that maintains its simplicity and

familiarity while eliminating overplotting. Partial or complete overplotting generally leads to visual clutter. Ellis and Dix (Ellis and Dix 2007)

survey the literature and derive a general approach to reduce clutter. According to their treatment, there are three ways to reduce clutter in a

visualization: by changing the visual appearance, by distorting visual space, or by presenting data over time. Some straightforward mechanisms

they list include decreasing mark size, increasing display space, or animating the data. Below we review more sophisticated approaches based

on appearance and distortion.

Practical appearance-based approaches to mitigate overplotting include transparency, sampling, kernel density estimation (KDE), and

aggregation. Transparency changes the opacity of the visual marks, and has been shown to convey overlap for up to five occurrences (Zhai,

Buxton, and Milgram 1996). However, there is still an upper limit for how much overlap is perceptible to the user, and the blending caused by

overlapping marks of different colors makes identifying colors difficult.

Sampling uses stochastic methods to statistically reduce the data size to visualize (Dix and Ellis 2002). This may reduce the amount of

overplotting, but since the sampling is random, it cannot be reliably eliminated. Furthermore, one of the core strengths of a scatterplot is its

ability to show outliers effectively, whereas sampling will likely eliminate all outliers (due to the intrinsic nature of an outlier).
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Figure 2: Scatterplot problems. Interactive scatterplot visualizing a car dataset with one continuous variable MPG  and one categorical variable Cylinders

showing limitations of scatterplots when plotting categorical variables on one or both axes.
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Aggregation methods can also mitigate overplotting. KDE (Silverman 1986) and other binned aggregations (Elmqvist and Fekete 2010; Fua,

Ward, and Rundensteiner 1999; Mayorga and Gleicher 2013; Im, McGuffin, and Leung 2013) replace a cluster of marks with a single entity that

has a distinct visual representation. Similarly, splatterplots (Mayorga and Gleicher 2013) combine individual marks with aggregated entities,

using marks to show outliers and aggregated entities to show the general trends. While aggregation techniques are effective against

overplotting for continuous variables, they fare poorly for categorical ones. Therefore, the generalized plot matrices (GPLOMs) (Im, McGuffin,

and Leung 2013) were proposed to solve this particular problem by adopting non-homogeneous plots into a matrix. The technique uses a

histogram for categorical vs. continuous variables, and a treemap for categorical vs. categorical variables. While effective in providing overview,

aggregated techniques sacrifice some compatibility with scatterplots since they no longer maintain object identity, meaning that each visual

mark no longer represents a single data point.

Distortion-based techniques avoid overplotting by changing the spatial mapping of the space and have the advantage to keep the identity of

individual data points. The canonical distortion technique is jittering, where a random displacement is used to subtly modify the exact screen

space position of a data point (Figure 3). This has the effect of spreading data points apart so that they are easier to distinguish. However, naïve

jittering mechanisms apply the displacement indiscriminately to all data points, regardless of whether they are overlapping or not. This has the

drawback of distorting points away from their true location on the visual canvas, and still does not completely eliminate overplotting.

Bezerianos et al. (2010) use a more structured approach to displacement, where overlapping marks are organized onto the perimeter of a circle.

The circle is grown to a radius so that all marks fit, which means that its size is also an indication of the number of grouped points. However, this

mechanism still introduces uncertainty in the spatial mapping, and it is also not clear how well it scales for very dense data, as this can lead to a

circle of arbitrarily large size. Nevertheless, the approach is a good example of how deterministic displacement can be used to great effect for

eliminating overplotting.

Trutschl et al. (2003) propose a deterministic displacement (“smart jittering”) that adds meaning to the jittered position based on clustering

results. This makes it easier to understand the resulting spatial display.

The most advanced and effective overplotting mitigations are data-aware, in that they determine instances of overplotting in a chart. As a case

in point, recent work by Chen et al. (2018) use animation to cycle the depth value of overlapping points in a scatterplot over time to ensure that

every point is shown on top at some point in the rotation. This means that overplotting is alleviated by the notion of “guaranteed visibility over
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Figure 3: Interactive jittering scatterplots. Jittering (i.e., randomly displacing) the points in a scatterplot to reduce overplotting caused by categorical axes; in

this case, the horizontal axis is mapped to Cylinders  and the vertical to Displacement  in a car dataset.
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time” (Munzner et al. 2003) presented by Munzner et al. However, a common criticism for techniques designed to mitigate overplotting is that

often do not scale to large dataset scales.

Shneiderman et al.(2000) propose a data-aware structured displacement approach called hieraxes, which combines hierarchical browsing with

two-dimensional scatterplots. In hieraxes, a two-dimensional visual space is subdivided into rectangular segments for different categories in the

data, and points are then coalesced into stacked groups inside the different segments. This work inspired gatherplots, which refines the layout

and design of hieraxes further.

Microsoft’s SandDance (Microsoft Research 2011) use atomic visual marks as the building block of a highly interactive and visual interface built

on smooth transitions between different spatial mappings. Drawing on an older experimental tool called Pivot from Microsoft Live Labs,

SandDance now exists as a custom visual in the Microsoft Power BI tool.

Keim et al. (2010) propose generalized scatterplots that use a data-aware combination of overlapping and distortion to avoid overplotting in a

scatterplot display. By balancing the overlapping and distortion, the user can achieve a display that conforms to their prior familiarity with

scatterplots while retaining minimal occlusion and appropriate distortion of data points. However, in contrast, our gatherplot approach instead

balances discriminability (the ability to distinguish individual marks) and spatial accuracy (the deviation from the true mapped position of a

point). While gatherplots thus yield better discriminability, they are also less visually scalable as well as accurate.

Hieraxes (Shneiderman 1996), SandDance (Microsoft Research 2011), and gatherplots (that we present in this paper) are all examples of a

recently recognized family of visualizations called unit visualizations (Park et al. 2018) where the relation between data items and their mark is

explicitly maintained. This identity property between data and display is exemplified in visualizations such as unit charts, dotplots, and

scatterplots. It can be contrasted with aggregated visualizations that combine multiple data items intop a single visual mark, such as bar charts,

pie charts, and histograms. Our gatherplots technique shows how a unit visualization can be designed, evaluated, and even deployed from the

ground up based on unit visualization principles.

It is worth comparing gatherplots to our own prior work on the Atom (Park et al. 2018) grammar for unit visualization.  Atom is a general-

purpose visualization grammar with gathering (packing with no overlap) as one of the visual layout options. In other words, the gatherplots

technique can be more or less replicated using Atom. However, our focus in this paper is on specialized design aspects of gatherplots, including

the interval marks, streamgraph layout, and layout modes. Also, where Atom is merely a grammar, this paper contributes a detailed user study

involving the gatherplots technique in comparison to jittering.

While we have already ascertained that scatterplots are not optimal for categorical variables, there exists a multitude of visualization

techniques that have been specifically designed for such data (Bederson, Shneiderman, and Wattenberg 2002; Hofmann, Siebes, and Wilhelm

2000; Kosara, Bendix, and Hauser 2006). Simplest among them are bar chart histograms, which visualize the item count for each categorical

value (Stevens 1946). Boxplots and violin plots show the distribution of continuous variables over categorical variables (Wickham and Stryjewski

2011). While hieraxes, histograms, and treemaps are effective in dealing with categorical variables, it is difficult to extend these to continuous

vs. categorical variables. One way is to apply binning to continuous variables to create groups of values. However, the optimal number of bins

depends on statistical characteristics of the data and the required task. Dot plots by Wilkinson (1999) renders continuous univariate variables

without overplotting by stacking nodes within dot size. Dang et al. (2010) extended this to scatterplots by stacking nodes whose values are

similar in 3D visual space. These pioneering works provide the theoretical background for the determination of optimal bin size for gatherplots.

Specialized versions of dot plots (Wilkinson 1999) have been imbued with their own monikers. The R graphics package presents a version called

a stripchart, which allows for both jittering and stacking categorical data in a one-dimensional scatterplot. Beeswarm plots (Eklund and Trimble

2021) improves on stripcharts by allowing for closely packed, non-overlapping points. The seaborn (Waskom 2021) statistical data visualization

library for Python extends these chart types to two-dimensional space. Stripplots (the name is somewhat unfortunate as it clashes with the strip

plots technique for rendering univariate data as strips, yielding a plot reminiscent of a barcode) are 1D or 2D versions of stripcharts with

random jittering where at least one axis is expected to be categorical. Swarmplots are 2D versions of beeswarm plots that place points to avoid

overlap. In comparison, gatherplots partition the available space into stacked groups and then organize the marks inside each group into

ordered grids. This yields a richer visual language that allows for sorting marks based on color and even resize marks to fill the visual space.

Another practical method for visualizing categorical data is for making inferences based on statistical and probabilistic data. Cosmides and

Toody (1996) used frequency grids as discrete countable objects, and Micallef et al. (2012) extend this with six different area-proportional

representations of categorical data organized into different classes. Huron et al. (2013) suggested using sedimentation as metaphor where

individual objects coming from a data stream gradually transform into aggregated areas, or strata.

Finally, Kinetica (Rzeszotarski and Kittur 2014), beyond presenting a novel touch- and physics-based interaction for 2D scatterplots, provides a

clustering algorithm where visual marks clump together with collision detection (and thus no overlap) based on their data ranges. The clusters

are similar to the partioned clusters in gatherplots, but are organically shaped, not arranged in orderly grid lines, and thus harder to compare.

The attraction approach used in Kinetica is reminiscent of the gravity model used for marks in dust & magnet (Yi et al. 2005).

1
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Figure 4: Main layout modes for gatherplots. 4 (a) absolute mode with constant aspect ratio, which maintains the aspect ratio; 4 (b) normalized mode of 4 (a).

The rate of male survivors in each passenger class is not easy to compare. 4 (c) streamgraph mode, where each cluster maintains the number of element in the

shorter edge, making it easier to see the distribution of the subgroups along the Y axis.

3 The Gather Transformation

Position along a common scale is the most salient of all visual variables (Bertin 1983; Cleveland and McGill 1985), and so mapping a data

dimension to positions on a graphical axis is a standard operation in data visualization. We call this mapping a visual transformation. We build on

the previous idea of structured displacement (Bezerianos et al. 2010; Shneiderman et al. 2000) by proposing a novel visual transformation

function called a gather transformation that non-linearly segments a graphical axis and organizes data points in each segment to eliminate

overplotting. More specifically, the graphical axis is subdivided into contiguous segments, one for each value in the categorical axis. Data points

as visual marks are then packed into the available display space without overlap (i.e., using a regular spacing).

Several different methods exist for adapting the gather transformation to a dataset. One approach is to keep the segments of equal size and

find a constant visual mark size that ensures that all points fit within the most dense segment. The constant mark size makes visual comparison

straightforward. Another approach is to adapt segment size to the density of the data while still keeping the mark size constant. This will

minimize empty space in the visual transformation and allows for maximizing mark size. A third approach is to vary mark size proportionally to

the number of points in a segment. This will make comparison of the absolute number of points in each segment difficult, but may facilitate

relative comparisons if marks are distinguished in some other way (e.g., using color).

For data dimensions that have a very large number of unique values, it often makes sense to first quantize (“bin”) the data so that the number

of elements is kept manageable (on the order of 10 or less for most visualizations). For example, a data dimension representing a person’s age

might heuristically be binned into ranges of 10 years: 0-9 years, 10-19 years, 20-29 years, and so on.

In a gather transformation, the coordinate axis has been partitioned into segments, where the order of segments on the axis depends on the

data. For nominal data, the segments can be reordered freely, both by the algorithm and by the user. For ordinal or quantized data, the order is

given by the data relation. Furthermore, it often makes sense to be able to order points inside each segment using the gathering

transformation function, for example using a second data dimension (possibly visualized using color) to group related items together.

Appropriate visual representations of data where the gather transformation has been applied are also important. The stacked entities of

gathered points should maintain object identity, so that each constituent point and their size is discernible as a discrete visual mark. Similarly, a

visual representation of the segmented graphical axis should externalize the segments as labeled intervals instead of labeled major and minor

ticks; this will also communicate the discontinuous nature of the axis itself to the viewer.
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4 Gatherplots: A 2D Gathering Representation

Applying gathering to two perpendicular axes defining a Cartesian space results in a gatherplot: a 2D distortion-based extension of scatterplots

that gathers data points into stacked groups, thereby eliminating overplotting without losing the identity of individual data points. Figure 5

provides an interactive gatherplot. Compared to jittering, which relies on random permutation, gathering organizes visual marks according to

visual features, so that the resulting group of objects forms a meta-object. According to Haroz and Whitney (2012), grouping marks by feature

helps in performing perceptual tasks such as finding outliers, counting items, and seeing trends. The technique is particularly designed for

visualizing categorical variables. Below we discuss the open design parameters for the technique, including layout, aspect ratio, and item

shapes.

Asia Europe US

10 15 20 25 30 35 40 4550

8
6

5
4

3

Figure 5: Interactive gatherplot. Gatherplot of the cars dataset with controls for the horizontal and vertical axes as well as the dot color assignment.
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Gatherplots eliminate overplotting by gathering marks with similar visual properties into stacked groups. This is inspired by previous works such

as hieraxes (Shneiderman et al. 2000) or frequency grids (Micallef, Dragicevic, and Fekete 2012; Cosmides and Tooby 1996). However, there are

many design possibilities for organizing the visual representation depending on the context, especially on the size distribution of each groups,

the aspect ratio of assigned space, and the task at hand. As a result, we derive the following three layout modes (see Figure 4):

Absolute mode: Here stacked groups are sized to follow the aspect-ratio of the assigned region. The size of the items are determined by

the maximum length dots which can fill the assigned region without overlapping. This means with the same assigned space, the groups

with the maximum number of members determines the overall size of the nodes (Figure 4(a)).

Normalized mode: In this mode, the mark size and aspect ratio is adapted so that every stacked group has equal dimensions. This makes it

easier to investigate ratios when the user is interested in the relative distributions of subgroups rather than the absolute number of

members.

Normalized mode is useful for two specific tasks:

Finding the ratio of the subgroups in a group (Figure 4). Because groups of different size are normalized to the same geometric area,

any comparison results in a relative comparison, which can aid statistical Bayesian reasoning (Micallef, Dragicevic, and Fekete 2012).

Finding the distribution of outliers. When there are many items on the screen for absolute mode, all marks must be reduced in size. This

can make outliers hard to locate. When normalized mode is used, the outliers are expanded to fill the assigned space, making them

easier to see.

Streamgraph mode: Here stacked groups are reorganized so that they maintain the same number of elements in their shorter edge. This

mode is used for regions where the ratio of width and height are drastically different (in our prototype implementation, we use a heuristic

threshold aspect ratio value of 3 for activating this mode). This means there are usually many times more groups in the axis in parallel with

shorter edges. A good example is for visualizing the population distribution with regards to gender and age; the resulting gatherplot

approaches ThemeRiver (Havre, Hetzler, and Nowell 2000) as the number of entities increases (Figure 4(c)).

The choice between absolute and streamgraph mode happens automatically based on the aspect ratio of assigned space and without the need

for user intervention. Therefore, only a simple interaction is required to toggle between absolute and normalized mode. However, we do

expose a setting to manually toggle between these modes as well.

Unit visualizations maintain an invariant one-to-one mapping between data points and visual marks (Park et al. 2018). This mapping ensures a

straightforward connection between the underlying data and the visual representation; nothing is hidden. However, it also implies that unit

visualizations such as gatherplots maintain a visibility guarantee; not only is there a one-to-one mapping between data points and visual marks,

but all visual marks are also guaranteed to always be visible. This has implications on the overall visual and data scalability of the gatherplot (as

well as any unit visualization); see Section 4.5.

To maintain guaranteed visibility of all marks, gatherplots will (a) resize marks as well as (b) relocate them into stacked groups. However,

resizing marks may affect the viewer’s ability to distinguish the marks and discriminate between them (similar to how jittering introduces

distortion). Furthermore, moving a mark from its original position in a regular scatterplot introduces distortion. We summarize these gatherplot

metrics as follows:

Spatial accuracy is the degree to which a mark in a gatherplot is mapped to the actual position it would have been mapped if the mapping

had been continuous (like for a regular scatterplot).

Discriminability is the ability for a user to perceive individual marks in a unit visualization (such as a gatherplot).

While these metrics are particularly important for unit visualizations, discriminability is also generally applicable to any visualization and has

been discussed in prior work (DBLP:journals/tvcg/LuLWYZDH22?; DBLP:journals/tvcg/VerasC20?).

To use gatherplots for continuous variables, we apply binning to partition the variable into discrete intervals. The resulting visualization

resembles dots plots by Wilkinson (1999), where bin size is equal to dot size. The size of individual bins is important for binning because it

determines the spatial accuracy and discriminability of the visualization.

Wilkinson proposed (1999) (where  is the number of data points) as the optimal dot size for dot plots (although he also noted that

an implementation should reduce size for overflow situations). This creates reasonable dot plots for fixed aspect ratio of 5 to 1, which is

common in statistical charts assuming normal distribution of nodes. However, gatherplots require two different assumptions: First, the aspect

ratio varies according to the space given to the categorical variables. Second, the dot size or bin size is determined by the global maximum in

the dataset, which may not be in the same cluster. Furthermore, because bin size is the same as dot size, selecting bin size can be thought of as

a trade-off between accuracy and discriminability. Using very small bin size and dot size increases the spatial accuracy, but results in poor

discriminability, and vice versa.

Balancing accuracy vs. discriminability is common in visualization for large datasets; for example, splatterplots limit the information shown to

users based on the available visual space (Mayorga and Gleicher 2013). Similarly, gatherplots choose bin size based on spatial accuracy and

discriminability. When the visual space is small, we use a comparably large bin size to increase dot size, thus resulting in poor spatial accuracy

and high discriminability; for larger space allocations, the bins can be made smaller to increase accuracy without loss of discriminability. Our

Visibility, Discriminability, and Spatial Accuracy

Managing Continuous Variables
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implementation iteratively finds a bin size as a trade-off between mark size and the most crowded bin; this is shown in Figure 6. Overall, this is

an inherent weakness of unit visualizations: the need to make individual marks distinct means that the visual representation may become

distorted, leading to the scalability of the visualization suffering.

Figure 6: Choosing optimal bin size based on available display space. In 6 (a), there is enough space so that the dot size can be maximized, improving spatial

accuracy. In comparison, in 6 (b) the assigned space is small, so the dot size is determined so that the most crowded bin interval will fit within the assigned

space. This results in two different overviews even though the two plots have identical aspect ratio.

Figure 7 shows how gatherplots handle the situation when continuous variables are assigned to both axes, causing both to be binned. The plot

is using normalized mode with two random variables. The normalized mode makes it easier to identify the outliers and the distribution of

outliers. Note that an alternate solution may be to facet the scatterplot by interaction, or even by animating the facets (Chen et al. 2018).

Assigning the same continuous variables to both axes can be treated as a special case of continuous vs. categorical variables. This yields an

essentially 1D representation somewhat akin to the work by Correll et al. on defensive rain cloud plots (DBLP:journals/tvcg/CorrellLKS19?;

DBLP:journals/cgf/Correll23?). Figure 1(c) shows how the gatherplot can even rotated to maintain visual integrity with scatterplots.

One limitation of gatherplots is that the technique requires binning to manage a continuous variable, yet binning creates arbitrary boundaries

that can be misleading. However, using both gatherplots and scatterplots in different views makes this problem less severe because the analyst

can simply choose the visual representation most suited for a particular task.

12

17

22

27

32

37

42

MPG

US
Europe
Asia

Origin

(a) Large display space.

12
18
24
29
35
40

MPG

(b) Small display space.



-4 -2 0 2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

35

40

45

50

55

(a) Scatterplot.

-4± 1 -2± 1 1± 1 3± 1 5± 1 8± 1 10± 1 12± 1 14± 1 17± 1

3± 3

10± 3

16± 3

23± 3

29± 3

36± 3

43± 3

49± 3

56± 3

62± 3

(b) Absolute gatherplot.



Figure 7: Using gatherplots to manage overplotting. 7 (a) shows a scatterplot with 5,000 random numbers with severe overplotting in the center area. In 7 (b),

gathering is applied to create a more organized view. However, the gathering resizes the items so small that it becomes difficult to detect outliers. 7 (c) shows

normalized mode, where the outliers are enlarged. This makes identifying the distribution of sparse regions easier.

Scatterplots have traditionally been used to view correlations between two variables. However, for a multidimensional exploration, one subtle

difficulty is when the user wants to see only the effect of a single variable. In gatherplots, the logical extension of an undefined axis is the

aggregation of all nodes in a single group along that axis. Figure 8 shows an example of this using a dataset on survivors of the Titanic.
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(c) Normalized gatherplot.

Undefined Axis Mapping

(a) All passengers.

(b) All passengers colored by survival (pink = survived, gray = died).

First Second Third Crew
Class

(c) Passengers gathered by Class (pink = survived, gray = died).



Figure 8: Gatherplot showing survivors of the Titanic. 8 (a) All people on board. Note that the X and Y axis are not defined. 8 (b) Color coding for survivors.

8 (c) Distribution of survivors over class variables. Here the Y axis is undefined. 8 (d) Distribution of survivors over the gender. Here the X axis is undefined.

The visibility guarantee for a unit visualization—such as gatherplots—means that there is an upper bound to how many data points can be

visualized in a gatherplot. A naïve calculation of this bound assumes that the minimum size for a unit visual mark in a gatherplot is 2  2 pixels—

one pixel of fill and one pixel of delimiting border between this and the next mark—yielding an area of  pixels per mark. This means that

given an assigned area of  pixels, we can at most fit  marks in the plot. If a typical plot is  pixels (which is the

approximate size in this article on most devices), we can theoretically fit up to 40,000 visual marks inside that plot. However, while  pixel

marks are feasible, marks of at least twice that—  pixels—are more realistic for discriminability reasons, yielding an upper bound of 10,000

marks.

However, this naïve calculation assumes uniformly distributed data leading to optimal coverage of the entire area of the plot, which is not

typical for real-world data. This, in turn, will lead to not all space on the plot being used by a visual mark. Presumably the worst case situation for

a gatherplot is when the same variable is mapped to both the X and Y axes, because this means that all of the data points are concentrated on

the diagonal cells, leaving the other cells empty. Furthermore, the higher the number  of groups are used in the gatherplot, the larger the

number of groups that are not on the diagonal ( ). For example, assuming 8 intervals on both axes yields 64 groups in total, but 56 will be

empty, leaving only 12.5% of the available space used. For the  pixel plot and  marks above, these figures mean that only

—rather than 10,000—visual marks can be shown on the plot. Obviously, a scatterplot with the same mark

size will not have the same scalability limitation since not every mark must be visible.

Gatherplots build on the same visual language as scatterplots. However, some aspects are different; below we discuss our design choices for

visual mark shape, stacked group layout, grid lines, as well as tick marks.

Scatterplots typically use a small circle or dot as a visual representation for items, but many variations exist that use glyph shapes to convey

multidimensional variables (McDonnel and Elmqvist 2009; Tufte 1983; Cleveland and McGill 1988; Chernoff 1973). This is also potentially useful

for gatherplots; the layouts generated by gathering can contain any visual mark, even aggregated ones like pie charts or bar charts.

In this paper we focus on unit visual marks, i.e. with one mark per data item. In normalized mode, sometimes the aspect ratio of visual marks

changes according to the aspect ratio of the space assigned to that value. Also, as gathering changes the size of marks to fit in one cluster,

sometimes the marks size becomes too small or too large compared to other marks. This results in several unique design considerations for

item shapes.

Rather than directly placing marks in the position governed by their spatial X and Y mapping, gatherplots arrange them into stacked groups. The

spatial layout of these groups is a free design parameter. Our implementation uses a regular grid so that the available display space—which

sometimes may have an awkward (i.e., non-square and possibly elongated) aspect ratio—is optimally used. However, the visual marks inside

each group could conceivably be organized into glyph-like shapes, such as a bar chart or a pie chart, based on a third discriminating variable. The

challenge for such arrangements is that the stacked group’s aspect ratio may not be optimal for a specific layout, yielding significant wasted

space. Figure Figure 9 gives an overview of some of these layouts.
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Figure 9: Stacked group layouts. Four design alternatives for spatial layouts of marks in a stacked group.

Grid lines inside the plot area of a gatherplot cannot be used in the same way as for a regular scatterplot since this area is not a continuous

visual substrate. However, while our implementations currently do not support this to minimize visual clutter, it is conceivable to use grid lines

as delimiters for the different intervals to make identifying stacked groups and their values easier.

As with grid lines, because we are representing ranges rather than single points, the single line type tick marks for scatterplots are not

appropriate for gatherplots; instead, ticks should communicate the partitioned segments on the axes. Without this visual representation, it can

be confusing to determine whether adjacent nodes with different offset has same value or not when the user is confronted with a number.

Figure 10 shows a non-exhaustive list of design alternatives of tick marks for representing ranges inspired by existing engineering and

mathematics notations for graphically showing ranges; additional visual designs are also possible. Our current implementations use bracket

type markers; eliminating one of the delimiting lines can further reduce clutter.

(a) Stacked group.

(b) Ordered stacked group.

(c) Bar chart glyph.

(d) Pie chart glyph.

Grid Lines

Interval Tick Marks

(a)

(b)

(c)



Figure 10: Tick mark types. The blue dotted region represents the area between adjacent tick marks. 10 (a) line type tick mark. 10 (b) double-ended arrows

showing the extent of each interval. 10 (c) double-ended arrows with delimiter lines. 10 (d) square brackets. 10 (e) angled brackets. 10 (f) curly braces.

Gatherplots support the same types of interactions as scatterplots. However, some additional interaction techniques are required to specifically

control the gathering transformation.

For example, when exploring multidimensional datasets, it is crucial to have a mechanism to filter unwanted data. To support this process in

gatherplots, we provide an optional mechanism to go back to the original continuous linear scale function. We allow each axis tick have an

interactive control to be filtered out (minimize) or focused (maximized). This is called axis folding, because it can be illustrated by folding a

paper. When minimized or folded, the visualization space is shrunk by applying linear scales instead of non-linear gather scales. This results in

overplotting, as if a scatterplot was used for that axis. Maximization simply folds all other values except the value of the interest to assign

maximum visual space to that value. Figure 11 shows axis folding applied to second class adult passengers in the Titanic dataset.

We have implemented a web-based demonstration of gatherplots using D3 and Angular. The prototype allows users to load various datasets

into a gatherplot. The visualization can be compared to scatterplots and jittered scatterplots with a single click.

5 Evaluation

(d)

(e)

(f)

Interaction

First Second Third Crew

Class

Adult

Child

Cherbourg
Belfast
Southhampton
Queenstown

Port

Figure 11: Survivors of the Titanic using gatherplots. The X axis is class of passengers, where second class passengers and crew are minimized (indicated by

the single tick marks). The Y axis is age, where the adult value is maximized (the child value has a single tick mark, indicating it is minimized). This view makes it

easy to compare first class adults and third class adults. Note that even in the minimized state, we can get an overview about the second class and crew by the

color line, which communicates the underlying distribution. This is due to sorting over the color dimension.

Implementation

http://www.d3js.org/
http://www.angular.org/


This study was designed to demonstrate the effectiveness of gatherplots, in particular its different layout modes with categorical

vs. categorical variables. Crowdsourcing platforms have been widely used and have shown to be reliable platforms for evaluation studies

(Paolacci, Chandler, and Ipeirotis 2010; Willett et al. 2013). Therefore, we conducted our experiment on Amazon Mechanical Turk. This also gave

us the opportunity to study the utility of the technique for the general population, who do not have specific statistical training. Research

materials associated with the study can be found on OSF at https://osf.io/bk9cx/.

We selected jittered scatterplots as the baseline condition for comparison. We motivate this choice as follows:

Jittering is a canonical technique that can be easily integrated within scatterplots.

Advanced jittering techniques, such as smart jittering (Trutschl, Grinstein, and Cvek 2003), are only necessary for large datasets with high

overplotting.

Aggregation methods, such as KDE (Silverman 1986) or spatterplots (Mayorga and Gleicher 2013), would lead to violating the unit

viusalization principle.

While there are several data-aware techniques that lay out marks in visual space to minimize overplotting, we think of gatherplots as

representative for this entire class of techniques.

Furthemore, we also wanted to measure the efficiency of different modes of gatherplots. Therefore, we designed the experiment to have four

conditions: scatterplots with jittering (jitter), gatherplots with absolute mode (absolute), gatherplots with normalized mode (normalized), and

gatherplots with a toggle to switch between absolute and normalized mode (both). We adopted a between-subjects design to eliminate

learning effects from experiencing other modes.

A total of 240 participants (103 female) completed our survey. Participants were compensated for their time and labor with compensation

consistent with the U.S. federal minimum wage ($7.25/hour at the time of research). Because some questions asked about concepts of absolute

numbers and probability, we limited participants to the United States to reduce the influence of language. To ensure the quality of the workers,

the qualification of workers were the approval rate of more than 0.95 with number of hits approved to be more than 1,000. Only three of 240

participants reported not using English as their first language. 119 people had more than bachelor’s degree, with 42 people having a high

school degree. We filtered random clickers by removing any trials where the completion time was shorter than a reasonable time (5 seconds).

This yielded a total of 211 participants.

Scatterplots can support many types of tasks. Based on Sarikaya and Gleicher’s analysis (2018), we selected retrieving a value as a low-level task,

and comparing and ranking as a high-level task. For the comparing and ranking task, two different types of questions were asked: the tasks to

consider absolute values such as frequency and tasks that consider relative values such as percentage. Therefore, for one visualization, 5

different questions were generated. For gatherplots, our interest is in the difference between task considering absolute values and relative

values. The five tasks are as follows:

T1: retrieve value considering one subgroup.

T2: comparing absolute size of subgroup between groups.

T3: ranking absolute size of subgroup between groups.

T4: comparing relative size of subgroup between groups.

T5: ranking relative size of subgroup between groups.

To reduce the chance of one chart being optimal by luck for a specific task, two charts of same problem structure were provided. This yielded a

total of 10 questions for each participant. Each question was followed by the question asking confidence of estimation with a 7-point Likert

scale, and the time spent for each question was measured.

Experimental Design

Participants

Task

https://www.mturk.com/
https://osf.io/bk9cx/


Figure 12: Example study screenshot. The study consisted of a total of 10 questions, each asked on a screen like this. A full example survey is shown in the

supplemental material on OSF.

We used a dataset on the survivors of the sinking of the Titanic in 1912. Each of the 2,201 survivors had four dimensions, which were all

categorical variables: class  (4 levels), sex  (2 levels), port of entry  (4 levels), and survival status  (2 levels). The five tasks above were

asked for two views with different dimensions. One view visualized class on X-axis, sex on Y-axis, and survival using color. The second view

visualized survived on the X-axis, class on the Y-axis, and port of entry using color.

Figure 12 shows an example study stimulus screen for the Titanic dataset using a normalized (space-filling) gatherplot for task T4. The OSF

repository contains a file qualtrics-study.pdf  showing a full run of an experiment (10 questions).

(a) The Gatherplot stimulus and the task; this is a relative comparison task (T4).

(b) The confidence question as a 7-point Likert scale.

Dataset

https://osf.io/bk9cx/


We believe that different types of tasks will favor from different type of layouts. Therefore, our hypotheses are as follows:

H1 - For retrieving value considering one subgroup (T1), both absolute and normalized modes will yield better accuracy than jitter mode.

H2 - For tasks considering absolute values (T2 and T3), absolute mode will yield the best accuracy over other modes.

H3 - For tasks considering relative values (T4 and T5), normalized mode will yield the best accuracy over other modes.

The results were analyzed with respect to the accuracy (correct or incorrect), time spent, and confidence of estimation. Based on our

hypotheses, we analyzed the different modes of layout for each type of question: retrieve value, absolute value task, and relative value task. In

total, we recruited 42 participants for jitter, 56 participants for absolute, 56 participants for normalized, and 57 participants for interactive

mode. The OSF repository contains code and data for replicating our data analysis.

Figure 13: Performance results. Effect of visualization on accuracy, completion time, and perceived confidence. Error bars show 95% confidence intervals

calculated using bootstrapping (N=1,000 repetitions).
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Figure 14: Detailed performance results. Effect of visualization and task (T1–T5) on accuracy, completion time, and perceived confidence. Error bars show 95%

confidence intervals calculated using bootstrapping (N=1,000 repetitions).

Accuracy performance results are summarized in Figure 13 (a), with detailed accuracy results by visualization type and task in Figure 14 (a). The

number and percentage of participants who answered correct and incorrect answers are shown in Figure 15.

Based on the effect sizes and 95% confidence intervals, we see evidence that jittering yielded lower accuracy than other conditions, which were

more or less equivalent in accuracy. This trend seems to mostly persist across all five tasks.
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Figure 15: Correctness results from our crowdsourced user study. 15 (a) Correctness for retrieving value (T1). 15 (b) Correctness for absolute comparison (T2).

15 (c) Corrnectness for absolute ranking (T3). 15 (d) Correctness for relative/normalized comparison (T4). 15 (e) Correctness for relative/normalized ranking

(T5).

Completion time performance results are summarized in Figure 13 (b), with detailed accuracy results by visualization type and task in

Figure 14 (b). For the retrieve-value task (T1), on average, the completion time (sec) for each interface was for jitter 36.5, absolute 43.3,

normalized 42.6, and both 51.7. For the absolute-value task (T2 and T3), on average, the completion time (sec) for each interface was for jitter

29.4, absolute 38.0, normalized 34.9, and both 50.6. For relative-value task (T4 and T5), on average, the completion time for each interface was

for jitter 31.8, absolute 32.2, normalized 35.0, and both 46.5.

Based on the results, we see evidence that the both condition (absolute and normalized accessed using a toggle) yielded longer completion

times than the other conditions, although this is not consistent across tasks. There is also some evidence that jitter on average yielded a shorter

completion time, but again not consistently across all five tasks.

The participants self-reported level of confidence was reported using a 7-point Likert-scale rating. Confidence performance results are

summarized in Figure 13 (c), with detailed accuracy results by visualization type and task in Figure 14 (c). This data shows some evidence that

jittering and normalized mode instilled lower confidence than absolute and both modes.

For the value-retrieving task (T1), a Kruskal-Wallis non-parametric test revealed that the type of interface had significant impact on the

confidence level ( ). The mean rating for each interface was for jitter 5.8, absolute 6.5, normalized 6.4, and both 6.3. A

post-hoc Pairwise Wilcoxon Rank Sum test was employed with Bonferroni correction to adjust for multiple comparisons. The jitter interface was

significantly lower than the other three modes (  for all cases). There was no difference between absolute, normalized, and both

interfaces.
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For absolute-value tasks (T2 and T3), a Kruskal-Wallis non-parametric test revealed that the type of interface did not have significant impact on

the confidence level ( ). The mean rating for each interface was jitter 5.2, absolute 5.4, normalized 5.3, and both 5.5.

For relative-value tasks (T4 and T5), a Kruskal-Wallis non-parametric test revealed that the type of interface had significant impact on the

confidence level ( ). The mean rating was jitter 4.6, absolute 5.1, normalized 4.2, and both 5.3. A post-hoc Pairwise

Wilcoxon Rank Sum test was employed with Bonferroni correction to adjust for multiple comparisons. Confidence for the jitter interface was

significantly lower than both and absolute, and normalized was significantly lower than absolute and both (  for all cases); all other

pairwise differences were not significant.

One possibility for explaining this result is that relative-value tasks (T4 and T5) is more difficult than the other tasks. This is reflected in the low

correctness for T4 and—especially—T5 shown in Figure 15. To investigate this idea, we tested the confidence level between task types using a

Kruskal-Wallis non-parametric test. This revealed that the type of task indeed had significant impact on the confidence level (

). The mean confidence rating for retrieving value taks was 6.3, absolute-value tasks 5.4, and relative-value tasks 4.8. The post-

hoc Pairwise Wilcoxon Rank Sum test was employed with Bonferroni correction to adjust for multiple comparisons, and showed that all three

task types were significantly different (  for all cases).

6 Discussion

Our results show that the gatherplots technique enables people to assess data distribution more correctly than when using jittered

scatterplots. It is plausible that the ordered grid layout used for marks in the gatherplots technique better supports quickly estimating (or even

counting) the marks compared to merely randomly jittering the points. However, there are several limitations to this work that may affect its

generalizability and overall utility.

By virtue of being a unit visualization (Park et al. 2018), where each data point is assigned a unique visual mark, the gatherplots technique is not

primarily designed for large scale datasets. For situations with several thousands or more data points, the corresponding visual marks will

become so small that they are not easily distinguishable as individual units. Accordingly, the user study presented in this paper was limited to

the Titanic dataset with only some 2,200 data points. We suspect that many of these findings will not bear out for datasets only an order of

magnitude larger.

Analogously, gatherplots are not suitable for conveying datasets with a large number of data dimensions. The technique is currently only

designed with a single categorical dimension per geometric axis, plus one assigned to mark color. The axes could presumably be subdivided into

multiple categories, similar to the Dataopsy technique (Hoque and Elmqvist 2024), but that is beyond the scope of this paper.

We chose to include an interactive setting—“both”—in our experiment where participants were allowed to toggle between absolutel and

normalized mode. However, the results show that this condition yielded significantly longer completion times with little to no improvement in

accuracy or confidence. The increased completion time may not be a surprise because of the toggle interaction. Furthermore, the fact that both

absolute and normalized mode had no specific benefit in their own right also explains why their combination was also not superior.

Finally, the gatherplots technique includes carefully designed interval marks to convey the fact that a gatherplot axis is partitioned rather than

continuous. Nevertheless, we have not evaluated the efficacy of this visual language. Since regular scatterplots use continuous axes, it is not

clear how well a novice user will grasp the partitioned nature of a gatherplot.

7 Conclusion and Future Work

We have proposed the gather transformation, which enables space-filling layout without overdrawing while maintaining object constancy. We

then applied this transformation to scatterplots to yield gatherplots, a generalization of scatterplots, which enable overview without clutter.

While gatherplots are optimal for categorical variables, it can also be used to ameliorate overplotting caused by continuous ordinal variables.

We discussed several aspects of gatherplots including layout, coloring, tick format, and matrix formations. We also evaluated the technique

with a crowdsourced user study showing that gatherplots are generally more accurate than jittering, and absolute and relative mode serve

specific types of tasks better.

We believe that gathering is a general framework that captures the transition between overlapping and space-filling visualizations while

maintaining object identities. In the future, it would be interesting to study the application of this framework to other visual representations.

For example, overplotting is a common problem when visualizing categorical variables in a parallel coordinates plot. Parallel sets aggregate

elements for the same value of a categorical variable into blocks, but loses the identity of objects. By applying the gathering framework, parallel

sets can be reconstructed to render individual lines instead of block lines, which would enable combining both categorical and continuous

variables.
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Footnotes

1. Interestingly, gatherplots actually preceded the Atom grammar; in fact, our gatherplots design eventually led to the formulation of the more general ideas

in Atom. However, as these things go, the grammar itself turned out to be a larger and more actionable idea.↩︎
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