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Abstract 

Through his philosophical and logical analysis in Time and Modality 

in 1957, Arthur Norman Prior proposed the logical system Q. In this 

paper, I logically characterise Q and, subsequently, study Q’s 

deficiencies. I also review other works which have been carried out 

based on Q in recent decades. 
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1 A Logic of Today-Yesterday (TY) 
The point of departure is a special focus on a logic of Today and 

Yesterday (I name this logic ‘TY’). Accept that we ‘only’ have two times. 

In particular, ‘today’ and ‘yesterday’ are our defined times in TY. Let the 

symbol p stand for some arbitrary proposition. We will have the 

following semantic conclusions in TY. 
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1. p is true at both times. In our logical system, the semantic value 

True on yesterday and the semantic value True on today are 

represented by Ty −Tt, where T stands for True, and y and t 

represent ‘yesterday’ and ‘today’, respectively. 

2. p is true today and has been un-statable (let me say ‘vague’) 

yesterday. Then, the semantic value is: Vy − Tt, where V represents 

Vague and T represents True. 

3. p is true today and has been false yesterday. Then the semantic 

value is Fy − Tt, where F and T represent False and True, 

respectively. 

4. p is false today but has been true yesterday. Then the semantic 

value is Ty − Ft. 

5. p is false today and has been vague yesterday. So the semantic 

value is Vy−Ft. 

6. p is false at our both times. Therefore, the semantic value is Fy − Ft. 
 
It shall be taken into account that p might (could) not have been made, or 
been expressed, yesterday. Therefore, ¬p (the negation of p), p ∧ q (the 
conjunction of p and some other arbitrary proposition q), ◇p (or ‘p at some 
time (i.e., at either yesterday or at today)’), and □p at both times (i.e., at 
both yesterday and today)’) might (could) not have been made, and been 
expressed, yesterday either. 

Proposition. The sentences (i) ‘p is true today and has been true 

yesterday.’ and (ii) ‘p is true today and has been vague yesterday.’ are 

designated. Analysis. Accept that f is a formula. Then f can express a logical 

law if and only if f’s concrete substitutions are true whenever they are 

statable (and are not vague). 

Obviously, both (i) and (ii) are true today. Also, in (ii) the value of 

yesterday’s might (could) have been true. 

According to the offered six semantic values, table 1 presents the 

semantic values of conjunction (∧), negation (¬), possibility (◇), necessity 

(□), and the negation-of-possibly-not (¬◇¬). It is remarkable that the only 

difference between the semantic values for p (Table 1: fourth column) and 

for ¬◇¬p (Table 1: fifth column) is where p has the semantic value ‘Vy − 

Tt’ (Table 1: second row). In fact, in that case, p is not true [at] both times, 

and today we can, necessarily, state that it is not p (i.e. we can deny). But 

yesterday it has been unstatable/vague, so p has the value ‘Vy −Ft’. But in 
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the same case, where p has the value ‘Vy − Tt’, then not-p has the value ‘Vy 

− Ft’. Therefore, not-p is not true at either time, and this fact—that not-p is 

not true at either time—is true today but has been un-statable/vague 

yesterday. This means that ¬◇¬p has the value ‘Vy − Tt’. From this 

difference others will follow. 

Definition. The symbol α expresses a law if and only if it takes one of 

the values ‘Ty − Tt’ and ‘Vy − Tt’. 

Note that a law cannot have the value ‘Fy−Tt’ (although the today’s 

semantic value is true). Let α stand for a law. Accordingly, it can be 

concluded that ¬◇¬α, always, expresses a law too (because it takes one of 

the values ‘Ty − Tt’ and ‘Vy − Tt’). However, α is not a law (because it is 

impossible that α take the value ‘Vy − Tt’). More specifically, α can only 

have the value ‘Ty − Tt’ (for all possible values of its variables) if α, itself, 

has had the value ‘Ty − Tt’ (for all possible values of its variables). This, in 

turn, could only be valid if the variables in α were not capable of taking 

either the value ‘Vy − Tt’ or ‘Vy − Ft’; for any formula of which any part 

takes one of these values must itself take one of them. Note that this 

follows from the fact that any function of what has been vague yesterday 

will itself have been vague yesterday. 

However, it shall be taken into consideration that ordinary 

propositional variables are not restricted in their possible values to those 

other than ‘Vy − Tt’ and ‘Vy − Ft’. 

Definition. The logical system Q can fundamentally be defined based 

on the logical operators ‘¬’, ‘∧’, ‘□’, and ‘◇’, as well as on ordinary 

propositional variables.  

Proposition. There can be no laws of the form □α at all. 

 

Table 1. Primary Semantic Values in TY 

 p ¬p ◇p □p ¬◇¬p 

Value 1 Ty − Tt Fy − Ft Ty − Tt Ty − Tt Ty − Tt 

Value 2 Vy − Tt Vy − Ft Vy − Tt Vy − Ft Vy − Tt 

Value 3 Fy − Tt Ty − Ft Ty − Tt Fy − Ft Fy − Ft 

Value 4 Ty − Ft Fy − Tt Ty − Tt Fy − Ft Fy − Ft 

Value 5 Vy − Ft Vy − Tt Vy − Ft Vy − Ft Vy − Ft 

Value 6 Fy − Ft Ty − Tt Fy − Ft Fy − Ft Fy − Ft 
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In this it is like the Ł-modal system (see [14,21]); but it is unlike it in that 

in the Ł-modal system there are not only no laws of the form α but no 

individual true propositions of the form p (the values of such 

propositions are limited, in that system, to ‘Vy−Tt’, ‘Fy−Tt’, and ‘Ty−Ft’). By 

the way, in the system Q, p does have the value ‘Ty − Tt’ when p has it, 

and there are statements for which p can stand which do have this value, 

though there are no forms which have it for all values, including ‘Vy −Tt’ 

and ‘Vy −Ft’, of their constituent variables, see [16], i.e. Chapter V of Time 

and Modality [17].  

Table 2 presents conjunction-based semantic values in our logical 

system. We focus on the logical conjunction p ∧ q, where p and q are two 

arbitrary propositions.  

 

Table 2. Conjunction-based semantic values in TY 

∧ Ty − Tt Vy − Tt Fy − Tt Ty − Ft Vy − Ft Fy − Ft 

Ty − Tt Ty − Tt Vy − Tt Fy − Tt Ty − Ft Vy − Ft Fy − Ft 

Vy − Tt Vy − Tt Vy − Tt Vy − Tt Vy − Ft Vy − Ft Vy − Ft 

Fy − Tt Fy − Tt Vy − Tt Fy − Tt Fy − Ft Vy − Ft Fy − Ft 

Ty − Ft Ty − Ft Vy − Ft Fy − Ft Ty − Ft Vy − Ft Fy − Ft 

Vy − Ft Vy − Ft Vy − Ft Vy − Ft Vy − Ft Vy − Ft Vy − Ft 

Fy − Ft Fy − Ft Vy − Ft Fy − Ft Fy − Ft Vy − Ft Fy − Ft 

 

Note that any of the propositions, p and q, can have 6 semantic values. 

Therefore, the conjunction p ∧ q would have 36 semantic values. In 

particular, we will have the following rules: 

• Let p’s value be T and q’s value be T. Therefore, the value of p ∧ q 

will be T. 

• Let p’s value be F and q’s value be F. Therefore, the value of p ∧ q 

will be F. 

• Let p’s value be T and q’s value be F. Therefore, the value of p ∧ q 

will be F. 

• Let p’s value be V. Therefore, the value of p ∧ q will be V 

(regardless of q’s value). 

• If the semantic values of today’s and yesterday’s are identical, 

then the semantic value of p ∧ q will be the same. 
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• If p’s value is Ty − Tt, then the value of p ∧ q will be the same as 

q’s value. 

Similarly, implication-based and disjunction-based semantic values can 

be presented:  

 

Table 3. Implication-based semantic values in TY 

⸧ Ty − Tt Vy − Tt Fy − Tt Ty − Ft Vy − Ft Fy − Ft 

Ty − Tt Ty − Tt Vy − Tt Fy − Tt Ty − Ft Vy − Ft Fy − Ft 

Vy − Tt Vy − Tt Vy − Tt Vy − Tt Vy − Ft Vy − Ft Vy − Ft 

Fy − Tt Ty − Tt Vy − Tt Ty − Tt Ty − Ft Vy − Ft Ty − Ft 

Ty − Ft Ty − Tt Vy − Tt Fy − Tt Ty − Tt Vy − Tt Fy − Tt 

Vy − Ft Vy − Tt Vy − Tt Vy − Tt Vy − Tt Vy − Ft Vy − Tt 

Fy − Ft Ty − Tt Vy − Tt Ty − Tt Ty − Tt Vy − Ft Ty − Tt 

 

 

Table 4. Disjunction-based semantic values in TY 

˅ Ty − Tt Vy − Tt Fy − Tt Ty − Ft Vy − Ft Fy − Ft 

Ty − Tt Ty − Tt Vy − Tt Ty − Tt Ty − Tt Vy − Tt Ty − Tt 

Vy − Tt Vy − Tt Vy − Tt Vy − Tt Vy − Tt Vy − Tt Vy − Tt 

Fy − Tt Ty − Tt Vy − Tt Fy − Tt Ty − Tt Vy − Tt Fy − Tt 

Ty − Ft Ty − Tt Vy − Tt Ty − Tt Ty − Ft Vy − Ft Ty − Ft 

Vy − Ft Vy − Tt Vy − Tt Vy − Tt Vy − Ft Vy − Ft Vy − Ft 

Fy − Ft Ty − Tt Vy − Tt Fy − Tt Ty − Ft Vy − Ft Fy − Ft 

 

At this point I shall focus on the implication. Let p’s value be ‘Vy−Tt’. 

According to table 1 (and as discussed above), the semantic values of 

¬◇¬p and p are ‘Vy − Tt’ and ‘Vy − Ft’, respectively. Therefore, semantically 

we can conclude that ‘Vy − Tt’ implies ‘Vy − Ft’. More specifically, the value 

of the implication ‘Vy − Tt ⊃ Vy − Ft’ is ‘Vy − Ft’ (that is not a designated 

value). It is interesting that the implication, semantically, takes the same 

value (i.e. ‘Vy − Ft’) when p has the value ‘Vy − Ft’. In fact, in case p’s value 

is false on today and has been un-statable on yesterday, the implications 

¬◇¬p ⊃ □p and ¬□¬p ⊃ ◇p will be semantically equivalent. Prior stresses 

the fact that these results correspond to the intuitive objections to the S5 

type of tense-logic. 
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Now let p be the proposition ‘I am both a logician and not a logician’. 

This proposition is false whenever it is statable. However, it is not always 

statable. In addition, ¬p is not statable (i.e., is vague) when p is not (and 

so is not always true). Consequently: 

– ‘Not-always-not-p’ (formally speaking: ¬□¬p) is true when it is statable 

(i.e., has the value ‘Vy − Tt’); while since p is never true. 

– ‘Sometimes-p’ (formally speaking, ◇p) is false when it is statable (i.e. 

has the value ‘Vy − Ft’). 

Correspondingly, based on table 3, the value of the implication 

‘Vy − Tt‘ ⊃ ‘Vy − Ft‘ is ‘Vy − Ft’. Therefore, it shall be concluded that the 

implication has the undesignated value ‘Vy − Ft’ when p has either the 

value ‘Vy − Tt’ or ‘Vy − Ft’ (obviously, in both cases the yesterday’s value 

is vague). 

It is worth mentioning that the afore-mentioned implications are 

Gödelian axioms (and that’s why Prior has, in [16], mainly focused on 

them). According to [16], the other two Gödelian axioms, and the classical 

propositional calculus, are verified [as well]; but besides being more 

tedious to work out, this result is of less significance, for although 

whatever is falsified by these tables will be something we do not want in 

Q, we will not want all that they verify, since some formulae which they 

verify merely reflect the fiction that there are ‘only’ two times (and ‘we 

really do not want to say that we only have two times’ [but Prior has, 

only, supposed that we only have two times in order to make a logical 

background for defining and analysing system Q]). 
 

2 The Matrix MQ 
The logical analysis of TY and its six-valued (i.e. (i) Ty − Tt, (ii) Vy − Tt, (iii) 

Fy − Tt, (iv) Ty − Ft, (v) Vy − Ft, and (vi) Fy − Ft) semantics have been the first 

step towards structuring a matrix with an ‘infinite number of elements’ 

which would give us the exact ‘many-valued’ equivalent of ‘what we can 

know as system Q’. In fact, the 6-valued logic TY is an approximation of 

an infinite matrix (I name the matrix ‘MQ’), where the sequence for a 

proposition contains two values (i.e. yesterday’s and today’s values). The 

Matrix MQ is analysed as follows: 
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1. The Structure of the Matrix. MQ is structured based on the 

symbols ‘T’ (that expresses Truth), ‘V’ (that expresses Vagueness), 

and ‘F’ (that expresses Falsity). Each of MQ’s elements may be 

associated with an infinite sequence of the symbols T, V, and F. The 

last symbol (which expresses today’s value) must be either T or 

false F (because today’s proposition is certainly statable). 

2. Designated Sequences in Matrix. The designated sequences are 

the sequences that do not contain Fs. In other words, there is no 

falsity in a designated sequence. As pointed out above, in TY, we 

have a law if and only if we have one of the values ‘Ty − Tt’ and ‘Vy 

− Tt’. These are, in fact, designated sequences in TY. 

3. Negation in Matrix. The sequence for ¬p is defined as follows: 

¬(v1v2v3...) = (¬v1)(¬v2)(¬v3) ..., where any vi stands for a semantic 

value. Suppose that we only have one single value. Therefore, (i) 

the semantic value of ‘the negation of T’ is F, (ii) the semantic value 

of ‘the negation of F’ is T, and (iii) the semantic value of ‘the 

negation of V’ is V. 

4. Conjunction in Matrix. Based on the sequences for p and for q (as 

some other proposition), the conjunctive term ‘p ∧ q’ is defined as 

follows: 

 Accept that we only have two single values (one for p and one for 

q). The conjunction-based values based on a pair of single values 

are represented in table 5. 

Table 5. Conjunction-based values 
based on a pair of single values in MQ 

 

∧ T V F 

T T V F 

V V V V 

F F V F 

 

5. Necessity in Matrix. Based on the sequence for p, the necessary 

term ‘p’ can be analysed in MQ. More specifically: 

– If the sequence for p is only structured based on Ts then p will be 

certainly structured based on Ts. 
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– If the sequence for p contains any vague ingredient, then in the 

sequence for p these Vs will surely keep their place unaltered. In 

addition, all other places will be occupied by Fs. 

– If the sequence for p has no Vs but contains Fs, [whether it also 

contains Ts or not,] the sequence for p will be structured based 

on Fs. 

– Possibility in Matrix. Based on the sequence for p, the possible 

term ‘◇p’ is analysable in MQ. More specifically: 

– If the sequence for p is structured based on Fs, the sequence for 

◇p will be the same. 

– If the sequence for p is structured based on Fs and V s (and there 

is no T), the sequence for ◇p will be the same as the sequence for 

p. 

– If the sequence for p contains Vs and Ts (it does not matter if it 

contains Fs or not), then, in the sequence for ◇p, the Vs will keep 

their place unaltered. Also, all other places will be occupied by 

Ts. 

– If the sequence for p does not contain Vs but contains Ts (it does 

not matter if it contains Fs or not), then the sequence for ◇p will 

only be structured based on Ts. 

3 Logical System Q: Whatness and Whyness 
This section itemises the most important logical characteristics of the 

logical system Q. 

1. Q is a three-valued logic admitting the existence of contingent 

beings. It means that Q is a logic in which one could intelligibly, 

and rationally, state that some beings are ‘contingent’ and some are 

‘necessary’. 

2. The logical structure of Q has been characterised by (and is 

presentable in the form of) the matrix MQ. 

3. Prior had the idea that variable domains might lead us to truth-

value gaps (even at the level of propositional logic) (see [7]), 

although he did not pursue this approach in his published 

material. This Prior’s idea can be regarded as his main motivation 

for designing the system Q. 
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4. Relying on his philosophical views, Prior proposed Q as a ‘correct’ 

(or ‘actualist’) modal logic (see [2,3]). The main reason is that Q has 

a ‘natural’ semantics. In my opinion, Prior was especially 

interested in thinking about the philosophical-logical (even more 

than formal-logical) aspects of Q. In my view, Q could especially 

support Prior’s philosophical analysis of the interrelationships 

between ‘tense logic’ and ‘[ordinary] modal logic’. For instance, 

based on his philosophical conception of Q, he expresses that “if 

tense-logic is haunted by the myth that whatever exists at any time 

exists at all times, ordinary modal logic is haunted by the myth that 

whatever exists, exists necessarily” (see [16]). This valuable 

statement is one of the most philosophical products of Q. 

5. What distinguishes Q from other similar/relevant logics is its 

account of sentences which contain names for individuals not 

existing in a given world (see [9]). All such sentences are said to be 

undefined, truth-valueless, and vague. This might be called the gap 

convention, in analogy to the falsehood convention which states 

that atomic sentences are false in case of empty reference. 

6. In his philosophical-logical analysis of ‘time and modality’, Prior 

believed that Q was a reasonably strong modal logic which would 

nevertheless lack sceptical and indecisive principles like, e.g., and 

¬◇¬(p ⊃ q) ⊃ (◇p ⊃ ◇q). Prior also believed that Q could be 

combined with a normal quantification theory without yielding the 

sceptical and indecisive principles in the mixed field.  
 

4 What are Q’s Deficiencies? 
According to [16], this section analyses Q’s problems and deficiencies. 

Accept that the proposition ‘S exists’ (where S represents a Subject) 

means ‘There are facts about S’. Regarding ‘S exists’, we can interpret that 

‘S [necessarily] exists’ and, ‘There are [, necessarily,] facts about S’. So, 

how should it be possible that S should not exist? 

Let us now focus on the proposition ‘It has been possible that p’. Then, 

it can be interpreted that ‘it is true if and only if p could [, possibly,] be 

true.’. Therefore, S’s non-existence is something that cannot have been 

possible (and in fact, S’s non-existence is something that have been, 

surely, impossible). Consequently, since ‘S does not exist’, the 
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proposition ‘There are no facts about S’ is not a thing that could be/have-

been true. 

4.1 Q as an Ordinary Modal Logic 

Let us interpret Q as an ordinary modal logic. I shall draw your attention 

to the following deficiencies: 

1. The ordinary modal logic Q can offer a way of keeping the clear 

definition of the proposition ‘S exists’ (and of ‘S [, necessarily,] 

exists.’) as well as of the proposition ‘There are facts about S’ (and 

of ‘There are [, necessarily,] facts about S’). However, it should be a 

fact that ‘S does not exist’ really is an impossible supposition (note 

that ‘S does not exist’ is equivalent to ‘There are no facts about S’). 

Let P represent a Predicate. Formally speaking: ¬◇¬∃P(P(S)) ought 

to be a modal theorem (in Q). But ∃P(P(S)), when S’s existence is 

necessary, does not follow, if ¬◇¬ does not entail □. 

2. The absence from Q of the rule to infer α from α can be recognised 

as a Q’s significant deficiency. Suppose that it is not necessary that 

α. So how can α be a law in our logical system? In addition, how 

can the logical operator of ‘necessity’ act as a stronger notion than 

that of exemplifying a logical law? 

3. Q does not commit us, as Łukasiewicz’s Ł-modal system would if 

we treated it as an ordinary modal logic, to the view that there are 

not any true assertion of necessity. 
 

4.2 Q as a Logic of Possibility/Necessity 

Let us now interpret Q as a logic of necessity and possibility. Such an 

interpretation can have its own peculiarities and abnormalities. Here I 

focus on an example. 

One formula which is ‘falsified’ by the tables is ◇p ⊃◇(p ∨ q). In fact, 

‘If p is possible, then either-p-or-q is possible’. According to this logical 

description, one may believe that the possibility of the disjunct p entails 

the possibility of the disjunction p ∨ q. But let us now suppose that p 

stands for the proposition ‘Only S1 exists’, and suppose that p is possible. 

Also, let q be the proposition ‘S2 does not exist.’. Here, p is possible. But 

the question is ‘whether it is possible that the disjunction ‘either p or q’ 

(and, in fact, the proposition ‘Either only S1 exists or S1 does not exist.’) 
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be true?’ The oddity of it is that the disjunction is vague unless ‘S2 exists’. 

Therefore, the disjunction is only statable (i.e. is either true or false) if both 

parts of it (in particular: (i) ‘S2 does not exist.’ and (ii) ‘Only S1 exists’) are 

false. Consequently, in this case, ‘possibly either-p-or-q’ is false although 

‘possibly p’ is true. 

 

4.3 Q as a Tense Logic 

By (i) utilising tense-logical interpretation and (ii) hypothesising that at 

one time it was true that ‘only S1 existed.’, we can use the same counter-

example for the formula ◇p ⊃ ◇(p ∨ q). Then ‘at some time p’ is, surely, 

true but ‘at some time either-p-or-q’ is not. In fact, the proposition ‘Either 

only S1 exists or S2 does not exist.’ can, only, be statable (and be either 

true or false) when ‘S2 exists’, and then both parts of it are ‘false’. 

The semantic values, of p and q, which (by the tables) refute ◇p ⊃ 

◇(q ∨ p) are ‘Ty−Ft’ for p and ‘Vy−Ft’ for q. Accordingly, formally we have: 

◇(Ty−Ft) ⊃ ◇((Ty − Ft) ∨ (Vy − Ft)) = ◇(Ty − Ft) ⊃ ◇(Vy − Ft) = (Ty − Tt) ⊃ 

(Vy − Ft) = Vy − Ft. Informally interpreting, these are, in fact, the cases in 

which ‘p is false now’ but ‘p was true yesterday’, and ‘q is false now’ but 

‘q was vague yesterday’. Actually, ‘p and q are both false today’, and the 

only time at which p was true was one at which q (and therefore, the 

whole disjunction) was vague. 
 

5  Further Developments of Q 
Prior, in [18], gives some postulates which he conjectured would suffice 

for a modal logic which takes account of this possibility. As pointed out 

above, by introducing the matrix MQ in 1957, Prior had fundamentally 

characterised the logical system Q. Later on, in 1964, Bull offered an 

axiomatisation of Prior’s modal calculus Q, see [6]. Accordingly, in [19], 

Prior by drawing upon the result of Bull’s analysis of that modal calculus, 

stated that the modal logic in question was called Q, and its 

axiomatisation was as what he and Bull offered in [19] and [6], 

respectively. 

It is worth mentioning that Kripke believed that it was probable that 

it was Prior’s work on many-valued matrices in [17] which gave him the 
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idea that a possible world’s model could be converted to a many-valued 

matrix (an idea that Kripke developed in [12]), see [7]. 

In 1973, Ruzsa, in his [20], dealt with some interesting extensions as 

well as some generalisations of the modal propositional calculus Q. [20] 

offers a strong mathematical analysis of, as well as semantical modelling 

of, the language of the Q systems. 

After a few years, Correia, in [8], introduced Priorean Strict 

Implication (PSI) as a logical system for a strict implication operator. PSI 

was semantically analysed based on ‘partial Kripke models’ (without 

accessibility relations). According to [8], Prior’s system Q and its [sub-

]related systems were shown to be the fragments of PSI or of a mild 

extension of it. 

In 2005, Akama and Nagata introduced a version of three-valued 

Kripke semantics for Q, which aimed to establish Prior’s ideas based on 

possible worlds, see [2,3]. In addition, they investigated some important 

formal properties of Q and proved the completeness theorem of Q. A little 

later, the same authors, in their [5], attempted to modify Q as a ‘temporal 

logic’. According to [5], although a temporal version of Q was suggested 

by Prior, the ‘subject’ had not been ‘fully’ explored in the main literature. 

Therefore, [5] attempted to work on the development of a three-valued 

temporal logic (so-called Qt) and also offered its axiomatisation and 

semantics. 

It seems that the logical system Q, after being axiomatised and being 

[semantically] developed, has provided a strong ground for logical 

analysis of future contingents (and, in fact, of contingent statements 

about the future). More specifically, [5] argued that their three-valued 

temporal logic Qt could provide a smooth solution to the problem of 

future contingents. Later on, in 2008, Qt could provide a backbone for 

formal-logical analysis of future contingents. In such a framework, relied 

on the Prior’s insight (mainly based on “future contingents” and [17] (ch. 

V)), [4] and [1] focused on the interesting problem of future contingents. 

The problem of future contingents is interwoven with a number of issues 

in theology, philosophy, logic, semantics of natural language, computer 

science, and applied mathematics, see [15]. 
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