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Abstract 
Knowledge plays a significant role in networked learning. Epistemic activities, and the structures that 
support such activities, do not just spring into life when a networked learning resource is created. 
They exist prior to, and outside of, any specific networked resource. They go on in the world. So 
epistemic activities and structures can be seen as part of a broader social-cultural context. In this 
paper, we argue that people who design for networked learning benefit from having a richer 
repertoire of ways of understanding relationships between epistemic activities and the structures that 
support them, and of viewing these in their social contexts. Educational designers need to be aware 
there are different ways of expressing knowledge, associated with implicit values that underlie 
knowledge practices within any social context. These varied ways of expressing knowledge have 
diverse effects on learners’ activities. Understanding such connections is useful when designing new 
networked learning resources, or when devising ways to improve existing learning networks.  

Using an approach from the sociology of knowledge, this paper explores the structuring of 
knowledge in a case study of networked learning drawn from an undergraduate design course about 
graphics and programming. The course uses a computer-based platform called Peep to extend what 
would otherwise be a set of timetabled, lab-based learning and teaching activities. Students and 
teachers can interact using Peep, at any time, from any location. These networked learning activities 
involve a mixture of lecturer-led tasks and student-driven collaborations, including requests for and 
offers of help, and sharing and discussing code and graphical designs. Our focus in this case study is 
on variations in the degree to which the knowledge being dealt with is dependent on its context for 
meaning and condensed. Our analysis reveals that one of the key design elements of Peep – the code 
editor – facilitates a distinctive, important epistemic activity. The code editor enables the ‘object of 
discussion’ (programming and the visual and animated effects of it) to come to the fore. Instead of 
students having to describe phenomena, events or processes that happen elsewhere, they each have 
the object of their discussion in front of them, embedded within all of Peep’s varied spaces for 
learning. Our analysis explores the relations between this design feature and Peep’s support for 
students’ discussions of complex concepts, sharing and exchanging views, and building on each 
other’s ideas and work.    
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An architectural framework for the analysis of learning networks 
Designing for networked learning does not happen in a detached socio-cultural context. When an educational 
designer develops “feature x” or “learning resource y”, or when participants engage in networked learning, they 
do so from a position they occupy in a social field of practice. Educational designers and networked learners 
engage in knowledge-related activities prior to, and outside of, the learning network that brings them together. 
Knowledge-related or epistemic activities are evident when people engage in discussions, or when they write 
essays, summarise, critique, investigate, memorise or do many other things, all of which are related to a 
knowledge topic or issue of interest to them. It is important that designers in networked learning understand 
epistemic activity as part of the broader social context in which it occurs, so that ways of structuring knowledge 
are addressed in their designs. Designing for networked learning requires, therefore, analytical tools that can 
support multiple investigations of complex intrinsically connected elements, which include, for example, the 
interplay between tools, tasks and divisions of labour, and an understanding of how combinations of these 
elements may influence learners’ emergent activities (Goodyear, 2005). Recent research by the authors 
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examines complex learning environments through an architecturally inspired analytical framework (Goodyear & 
Carvalho, 2013; Carvalho & Goodyear, in press). This work investigates how a combination of heterogeneous 
structural elements supports learning; that is, how a particular assemblage supports and shapes, but does not 
determine, learners’ activities. For example, one can have a plan for the tools learners will use, the tasks they 
will undertake or the arrangements of learners into groups. However, the resulting assemblages are likely to be 
adapted and reconfigured by learners. The structural composition of learning networks can be analytically 
divided into (i) structures of place (or set design), (ii) structures of tasks (or epistemic design) and (iii) social 
structures (or social/organisational design) (for other research involving empirical applications of these ideas 
see also Pinto, 2014 and Yeoman & Carvalho, 2014; for a theoretical discussion, see also Goodyear et al., 
2014). This paper focuses on epistemic design. We analyse tasks and the structuring of knowledge in a learning 
network, exploring how a particular assemblage may shape and influence learners’ activities, and we then 
connect our findings to design for networked learning more broadly. Drawing insights from an approach from 
the sociology of knowledge - Legitimation Code Theory (LCT) (Maton, 2014) - we discuss the analysis of the 
epistemic design of an undergraduate learning network. We argue that designers would benefit from using an 
LCT-informed approach in their work, as it provides a meta-language to understand the role of knowledge in 
design for learning: (1) it helps designers recognise that there are different ways that knowledge may be 
expressed within different knowledge practices, and (2) it provides a basis for designers to work from, where 
they can figure out ways of enacting these differences through their designs. LCT supports analysis by explicitly 
articulating the organizing principles of knowledge within a learning network, enabling one to explore 
connections between design elements and processes related to knowledge-building. In the next section of this 
paper, we introduce some concepts from LCT. We then provide an overview of the Peep case study and we 
briefly report our data collection. In the following section, we examine the structuring of knowledge in this 
particular network, in light of the LCT concepts, discussing one design element that appears to be key in our 
case study, and analysing the tasks proposed in relation to knowledge-building.    
 
Insights from the sociology of knowledge 
Education, including networked learning, involves the production, recontextualization, teaching and learning of 
knowledge. A key resource in the sociology of knowledge is Bernstein’s theory of pedagogic discourse. 
Bernstein viewed pedagogic practices as not limited to classroom settings, including instead, any social context 
where epistemic activity takes place (Bernstein, 2000). His early work centred on understanding how pedagogic 
processes are shaped, proposing a way to investigate the forms of communication within these processes, which 
included analysing “how a pedagogic text has been put together, the rules of its construction, circulation, 
contextualization, acquisition and change” (Bernstein, 2000, p.4). Bernstein’s later work suggested ways of 
examining different forms of knowledge, realised through an everyday, common sense knowledge (horizontal 
discourse) or academic, specialised forms of knowledge (vertical discourse) (Bernstein, 2000). Legitimation 
Code Theory (LCT) builds on and extends Bernstein’s code theory and Bourdieu’s field theory (Maton, 2014; 
Maton et al., 2014). LCT is associated with the “school of thought” of social realism, which views knowledge as 
both: (a) socially constructed, within cultural and historical conditions, and (b) something that is real in its own 
right and takes different forms which have effects on educational practices (Maton & Moore, 2010). Thus, 
knowledge changes and is influenced by relations of power, but importantly, knowledge claims are not 
necessarily all the same in different social contexts (Maton & Moore, 2010). In line with this perspective, we see 
the nature of knowledge as likely to differ amongst a variety of learning networks – what counts as relevant 
knowledge and practices will not be the same for every network. LCT views knowledge practices as underlain 
by implicit ‘rules of the game’ that affect and shape the way knowledge is expressed or communicated in any 
given educational or intellectual field. They may regulate, for example, who is “entitled” to participate in a 
certain profession, what is to be considered an interesting insight, whose voice is legitimate and so on (Maton, 
2014). We argue, in this paper, that this is an important issue for designers in networked learning, because in 
order to identify key reusable design elements that may inform the development of better learning environments, 
it is crucial that one considers the various forms that an epistemic structure may take, as well as the related 
effects of such structures. LCT allows us to address two important issues. Firstly, there are different ways that 
knowledge may be expressed through design, offering a “language” to express these differences. That is, LCT 
offers analytical tools to identify the organizing principles that underlie the knowledge practices enacted through 
networked learning (the practices of designers, teachers and learners). Secondly, LCT allows us to theorize 
about ways in which a specific epistemic assemblage may affect those who participate in network activities, 
including ways in which network participants co-configure the space. In this paper, our focus is on investigating 
the structuring of specific epistemic assemblages, as we theorize about the role they play in terms of cumulative 
learning and knowledge-building within a particular learning network.  
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One of the key activities in networked learning is knowledge-building. Scardamalia and Bereiter (2003) define 
knowledge-building as “the production and continual improvement of ideas of value to a community, through 
means that increase the likelihood that what the community accomplishes will be greater than the sum of 
individual contributions and part of broader cultural efforts” (p. 1370). Maton (2013) sees knowledge-building 
as a process that generates “ideas that have utility or appeal beyond the specificities of their originating 
contexts” (p. 8). In a classroom, knowledge-building relates to students’ building on their previous learning 
experiences and understandings, and reusing what they learned in new contexts (Maton, 2013). Both definitions 
emphasize knowledge-building as the result of cultural efforts. However, while Scardamalia and Bereiter 
highlight the significance of knowledge, they do not offer tools to analyze its organizing principles. LCT offers 
a means of conceptualizing knowledge-building that allows us to see knowledge as an object of study, so that 
one can then theorize its effects on social practices. LCT concepts may support researchers in exploring issues 
related to curriculum structures, analysing whether units of a course are knowledge bounded, or whether they 
extend and integrate knowledge from previous units; or one may examine processes of learning, investigating 
whether students are able to apply their understandings in new contexts and over time, and so on (Maton, 2009). 
An increasing number of scholars have been exploring such issues, in a variety of fields, applying LCT in 
empirical investigations of the organizing principles that underlie practices in, for example, history (Shay, 
2011), academic literacies (Hood, 2012), design (Carvalho et al., 2009; Dong et al., 2014) and in many other 
fields. Our focus here is on exploring the structuring of knowledge in a case study of a learning network that is 
part of a course in design computing in higher education. In particular, we examine the “features” of knowledge 
within this environment, and we trace a trajectory for how knowledge is shaped over the sequence of tasks 
proposed. Understanding such issues is a necessary step, as we consider the potential effects of epistemic design 
on the activities of network participants. The next section introduces some key LCT concepts that we use in our 
analysis. 
 
Legitimation Code Theory: Semantics and “semantic waves” 

Legitimation Code Theory (LCT) is a sociological framework for researching and analysing knowledge 
practices. It is a practical approach, designed as an open-ended evolving framework (see Maton, 2014; Maton et 
al., 2014). Maton (2014) refers to LCT as comprising of a multi-dimensional conceptual toolkit that brings 
together a set of concepts for analysing organizing principles underlying practices, and referred to as 
legitimation codes. In this paper we focus on one of LCT’s five dimensions – ‘Semantics’ – which regards 
social fields of practice as “semantic structures and whose organizing principles are conceptualized as semantic 
codes comprising semantic gravity and semantic density” (Maton, 2014). Semantic gravity examines knowledge 
in relation to degrees of context dependency, within a continuum of strengths. Stronger semantic gravity (SG+) 
denotes that meaning is more likely to be dependent on its context in order to make sense to people; whereas 
weaker semantic gravity (SG-) means that meaning is less context-dependent in order to make sense (Maton 
2009, 2013). In the field of biology, for example, the meaning associated with the name of a specific plant, 
expresses stronger semantic gravity than the meaning of the name of a genus of plants, which in turn has 
stronger semantic gravity than processes that are common to plants, such as photosynthesis (Maton, 2013). 
Importantly, Semantics always views meanings in relation to “a context”. The concept of semantic density 
articulates degrees of condensation of meaning, which may manifest as symbols, terms, concepts and phrases, 
for example (Maton, 2013). Again, within a continuum of strengths, stronger semantic density (SD+) is 
identified when more meanings are condensed; weaker semantic density (SD-), denotes that less meanings are 
condensed. When applying these conceptual ideas in a study conducted in secondary schools, Maton identified 
that semantic waves were key to understanding knowledge-building. He noted that the particular ways in which 
recurrent shifts in context-dependence and condensation of meaning occurred were of importance to knowledge-
building (Maton, 2014). One key characteristic in knowledge-building is that it involves understanding how 
different forms of knowledge are related and change over time. When analyzing activities in classrooms, Maton 
observed that teaching activities often involved “a repeated pattern of exemplifying and ‘unpacking’ educational 
knowledge into context-dependent and simplified meanings” (Maton, 2013, p.9). This contrasted to educational 
assessments, where students needed to demonstrate that they had mastered certain pedagogic subjects, with the 
use of “relatively decontextualized and condensed knowledge” (p.9). Students needed to master not only how 
different forms of knowledge relate to each other but also how knowledge changes over time. The question then 
arises of what happens “in between” - how students get from “a” to “b”, or how the “transformation of 
knowledge” takes place. Maton argues, that when teachers “unpack” technical or scientific terms, students are 
able to connect those to their everyday language and experiences, but it is crucial that the process does not stop 
there - concepts need “repacking”. This is so, because academic subject areas require that students are able to 
see technical terms as part of a “web of meanings”, which may involve, for example, compositional structures, 
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taxonomic structures and processes (Macnaught, et al., 2013). Assessment tasks often require that students 
demonstrate that they understand these technical terms within this web of meanings. When Semantics concepts 
were applied in the analysis of classroom knowledge-building activities, trajectories of knowledge practices 
related to context-dependency and condensation of meaning over time were identified (Maton, 2013) and some 
semantic profiles (mapped as “semantic waves”), seemed to be more likely to enable knowledge-building. Of 
particular interest were semantic profiles that show a specific pattern depicting growth over time, and starting 
from concrete going towards greater levels of generalization and abstraction. In the next section we discuss how 
the LCT concepts above were applied in the analysis of the epistemic design of Peep, presenting examples of 
elements that appear to support students in gradually moving from concrete to greater levels of generalization 
and abstraction, in the design of the sequencing of tasks proposed and elements that act as connectors within a 
“web of meanings”. That is, we discuss design elements that seem to encourage movements from stronger 
semantic gravity and weaker semantic density (SG+, SD–) towards weaker semantic gravity and stronger 
semantic density (SG–, SD+). We show how a key design feature - the code editor, embedded throughout the 
environment - enables a certain pacing, enacting a specific way of dealing with knowledge within the network. 
We argue that such a combination of elements reflects a “semantic profile” that would favour opportunities for 
knowledge-building processes in networks.  
 
Peep case study: supporting students to learn programming as a 
tool with which to design 
Peep (Figure 1) is an online platform created to support one of the core courses in the Bachelor of Design 
Computing at the Faculty of Architecture, Design and Planning in the University of Sydney (Australia). Peep 
was designed with social network elements in mind, so as to promote knowledge sharing and knowledge-
building amongst first-year undergraduate design students. Peep supports students’ discussions about code and 
enables students to see, work with, comment on, and learn from other students’ design work: code, images and 
animations. Processing.js is the visually-oriented programming language that students use. The course combines 
the creativity of design with technical knowledge of computing, where students have opportunities to explore 
aesthetic elements through computer-expressed works. Over a 13-week semester, students, lecturer and tutors 
meet weekly for one-hour lectures and two-hour lab tutorials. Students interact with Peep during tutorials, but as 
this is a web-based environment they can also access and use it remotely. The tutorials happen in the physical 
space of the labs but interactions also happen in the ‘digital spaces for conversations’ via the functionalities in 
Peep. Figure 1 (left) illustrates the main page of Peep, showing links to the pages that students can access during 
the course, recent activities and latest announcements. Figure 1 (right) is a snapshot of the Forum. 

 

Figure 1: Main page (left) and the code editor showing code and visual image (right) 

Data collection  

Data collection and analysis involved interviews with the lecturer/designer of Peep, a developer, and one of the 
students enrolled in the course, and we observed students attending tutorials. We analysed the learning 
environment as an object of study itself, examining different elements of the network (set, epistemic and social 
design) in relation to the activities of students, collecting screenshots that illustrated moments we found 
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particularly interesting for our analysis (Carvalho et al., in press). At the time of our data collection, 63 students 
were enrolled in the course, and all of them used Peep during tutorials and for their assignments. In this paper 
we focus on epistemic activities and structures in relation to two spaces: code editors and tutorials. 
 
What is the “context” in which “programming as a tool to design” is taught? 

Semantic gravity conceptualizes how meanings relate to their contexts. At the macro level, the broader context 
of Peep is the field of design (design computing being the specialized area). In an earlier analysis of Peep, we 
discussed design elements that aimed to introduce first-year design students to the social context of the 
profession , exposing students to ways of practicing design that are grounded in practices within the field, 
encouraging support for, and critique of, each other’s work (Carvalho et al., in press). Promoting “a sense of 
community” was highlighted by the lecturer/designer of Peep as one of its core functions. Although most tasks 
in Peep involved individual assignments, students engaged in conversations about each other’s work. In the next 
section we explore the trajectories of knowledge that are enabled when students interact within Peep’s varied 
spaces (Figure 1), using the concepts of semantic gravity and density to analyse its epistemic design. In each of 
these different spaces students are exposed to knowledge, for example: Tutorials space - where students have 
access to guidance for the completion of tasks; Forum space - where students discuss issues, ask for help, 
support each other; Portfolios space - where they can complete their assignments and also showcase their work. 
 
Analysis and discussion 
Code editor – a key epistemic element 

One of the unique features in the design of Peep – the code editor – is described by the lecturer/designer as an 
element that brings programming to the forefront of the environment, highlighting code as a “first class object” - 
as something that is as important as text or images. Figure 1 (right) shows a threaded discussion from one of the 
pages in the forum. By clicking on one of the buttons (Figure 1, right) students open a window containing the 
images (or animation) produced with the coding. Clicking the button shown on the far right of the figure opens a 
window showing the code itself. The code editor, as a design element, allows students to navigate between 
different forms of representation (images/animation and code text). The code editor acts as a “translator device” 
supporting students in their learning processes, by visually offering a way of “unpacking” and “packing” 
different meanings associated with the use of programing to design. Such meanings would include, for example: 
• What/how textual elements/characters together form a sequence of code 
• The rules and norms, the order to be followed so that a sequence of code is formed - e.g. what 

text/characters needs to be typed and in what specific sequence  
• Relationships of those rules to form a class of codes - e.g. “code a” belongs to the “class of codes x”   
• Visualizations that show the effects of the code - e.g. a sequence of “code a” produces “image b”  
• The rules and norms that link “code a” to “image b” - e.g. what code should be used for what effect 
• Relationships of those rules to form a class of images - e.g. “image a” belongs to the “class of images x” 
• Establishing connections between these relationships – e.g. between code-image and image-code 

  
The code editor plays a key role in supporting first-year undergraduate students in understanding highly 
decontextualized and condensed ideas (SG–, SD+) such as those related to using code as a tool to design, or the 
use of textual elements and characters that will realize a certain image and produce a design. By enabling first-
year students to navigate between two forms of abstract representations (code and images) it supports the 
recognition of relationships between those two, in the different associated meanings as listed above. The effect 
of the code editor in the networked context is that it brings the object of discussions to the forefront, for all to 
see, facilitating and supporting students’ discussions of abstract concepts. When novice design students 
encounter a problem with their code, it may be difficult for them to verbalize what the problem is, due to the 
high degree of abstraction that programming requires. These novice students are thus dealing with concepts 
characterised by weaker semantic gravity and stronger semantic density (SG–, SD+) - they are context-
independent and condense a range of meanings. With the support of the code editor, however, students do not 
need to say what sort of problem they “think” they have. Nor do they need to type the piece of code that they 
suspect is wrong into an email or threaded discussion. They simply have to make an entry in the discussion 
forum, with their code embedded in it, and ask for help. Unlike most text-based discussions in networked 
learning, where what is being discussed is not necessarily present or easily shareable, the code editor allows for 
the shared visualization of what is under discussion. Easy debugging of individual problems, however, is not the 
only benefit gained from using the code editor. It also facilitates learning by allowing others full access to the 
code. Other students see the types of errors that were made, and the proposed solutions. The discussion is easily 
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accessible and everyone can participate. Therefore, the code editor helps students converse about programming, 
supporting them in coping with complexities associated with learning a type of knowledge whose structure 
suggests meanings that display weaker semantic gravity and stronger semantic density. This is particularly 
important for novice programmers, as pointed out by the lecturer:  
 

and what's more important to me, actually, is that other students get involved then as well, 
because they don't need the patience to, you know, I have as an instructor to go through and work 
with the student to get that code and get their output, etc.  But rather the code is right there, 
another student comes along and clicks on it and goes “oh yeah, I know what's wrong with that, I 
had that problem”, and they can respond. So we build a community much, much quicker because 
… we reduce all of the barriers to sharing code problems and running that code and just showing 
off to each other as well, because that's part of what the portfolios do. (Lecturer interview) 

 
As the code editor makes their design creations visible, students have opportunities to also explore how their 
peers have achieved certain effects in their work, and they may choose (or not) to use other people’s work as the 
basis for their own designs. If so doing, students could be building on each other’s activities and learning from 
each other’s work.  Our conjecture is that the presence of the code editor throughout the environment, and its 
use as part of tutorials, the discussion forum and portfolios, enables a trajectory that moves expressed 
knowledge upwards, allowing the lecturer to work with students at a “higher conceptual level”.  
 

well, I have the opportunity now with Peep to take the lectures to a higher conceptual level, focus 
more on design issues and less on teaching students how to cope, which is something that I was 
getting frustrated by in the earlier teaching, was that I'd have to essentially teach a lot of coding in 
the lectures and then reinforce that in the tutorials, because the tutorials were essentially follow-
along exercises where there wasn't a large amount of interaction and there wasn't a good support 
through a nice discussion forum like this.  (Lecturer interview) 

 
Tutorials – analysing the sequencing and rhythm of tasks 

Students do not have to switch from one screen to another as the code editor is embedded in the Tutorials (see 
Figure 2): on the same screen they have a space to read about the task, and another to practice that task. So 
students can focus on the lesson at hand, rather than having to cope with different screens. Moreover, a specific 
lesson structure is repeatedly used in the tutorials: each lesson has the left side reserved for some textual and 
visual information, and the right side of the screen displays a code editor for students’ activities. Once initial 
tutorials are completed, students know what to expect in subsequent lessons. Similarly, a consistent format is 
also used in terms of pacing the tasks (most tutorials have 4 to 6 proposed lessons) and sequencing (tutorials 
gradually build on previous ones). Students use the code editor to tackle the programming tasks proposed, and 
the editor automatically follows as they scroll down the page (Figure 2). Having the editor for their activities on 
the same screen is important to the epistemic design as it allows students to remain focused: 
 

Again, they don't have to context switch, there's no copying the code from one – from the 
discussion forum, putting it in to the Processing, and … reformatting it so that it will actually run 
and then – and then it doesn't run and then they have them switch problems.  (Lecturer interview) 

 
In their first tutorial, students undertake an “Introduction to Peep”, where they are exposed to content related to 
very basic descriptive information - e.g. what is the environment, why they should use it, how to log in, etc.  
Such information reflects context-dependent practices with simpler meanings (they mainly refer to using Peep) 
(SG+, SD–). Students then learn about what characters and letters should be placed together to form a line of 
code, and rules and norms related to coding and its effects. These early tutorials also get students to work back 
from an image to figuring out the code that produced that particular image, and in so doing, they reinforce 
relationships between using code and image in their designs. In later tutorials, students work with moving 
images, which add complexity. They complete three assignments during the course. Each of the assignment 
questions is modeled on fictitious briefs, requiring students to demonstrate they have mastered programming 
skills for design. As the passage below suggests, students need to demonstrate their knowledge of programming 
to design in the form of “generative art and design” and expressing variations in “unique prints” under the 
themes of “movement and energy” or “balance and harmony”, that is, in a context of weaker semantic gravity 
(they need to interpret the meaning and figure out how to express balance and harmony in generative art and 
design) (SG–): 
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Design Brief: A printing firm is interested in experimenting with generative art and design and 
has approached you to develop software that will generate variations on a theme, such that every 
customer has a unique print. The designs will be printed on either apparel (e.g. t-shirts, shows, 
etc), posters or postcards. The client has proposed the following themes: (i) Movement and 
Energy; (ii) Balance and Harmony. Your job as a designer is to select one of these themes and one 
or more of the product categories and develop a sketch in Processing that will generate suitable 
design variations that express that theme. (…). (Peep webpage) 

 
The trajectory of knowledge throughout the sequences of tutorials shows a pattern of: new programming 
knowledge is introduced, unpacked and repacked forming the basis for new tutorials. Thus, earlier tutorials 
build from simpler, more concrete understandings of code (SG+), where less meaning is condensed (SD–), 
taking students gradually into more complex meanings (SD+) within contexts that are more diffused (SG–) as 
the design brief above. Two excerpts from Tutorial 2 (depicted in the image on the left in Figure 2 and 
reproduced below for clarity) illustrate the unpacking of the elements of coding through an analogy with English 
language (SG+, SD–): 
 

An expression is like a phrase in English: an expression always has a value, determined by 
evaluating its contents. Some expressions can achieve complex results, but an expression can be 
as simple as a single number. Here are some examples of some expressions, with their values. 
[Image shown]  (Excerpt 1, Tutorial 2) 
A set of expressions creates a statement, the programming equivalent of a sentence. Every 
statement ends with a terminator, the programming equivalent of a full stop / period. In the 
Processing language, the statement terminator is a semicolon [image surrounded by grey square]. 
You have to use a semicolon at the end of every statement that you make in Processing. [Image 
shown] (Excerpt 2, Tutorial 2) 

 

Figure 2: Tutorial 2 (left) and Tutorial 9 (right) 

Excerpts 1 and 2 are accompanied by images that show the code in use, through a grey squared frame (see 
Figure 2, Tutorial 2). These larger grey frames within the tutorials act as markers for what eventually will be the 
space where a code editor will show the programming language and its visual effects (see Figure 2, Tutorial 9). 
Smaller grey squared frames are also used within the text, surrounding specific words or letters, and in this case 
they are markers of relevant technical terms in programming for that particular tutorial (dashed circles in Figure 
2). They appear repeatedly throughout the tutorials, highlighting terms that are of importance in the text. Such 
elements are not just words in the screen they are key design elements in which more meaning is condensed 
(SD+) and they highlight to students relevant terms in the “web of meanings” within this context. 
 
Conclusions 
Design for networked learning can benefit from identifying and abstracting key elements that influence learners’ 
activities. An LCT-informed approach may help designers explicitly articulate what is enabled within the 
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epistemic design of a learning network. In order to create effective structures of knowledge in a network, 
designers may analyse what and how tasks are proposed, their sequencing, pacing, and/or how other elements 
enable certain ways of communicating knowledge. LCT supported our analysis by mapping knowledge in a 
context, through the sequencing of the tutorials and in understanding the role of the code editor. We could then 
see what was achieved with the code editor as a design solution: allowing students to navigate between different 
forms of representation and group discussions, to accommodate higher abstractions than would otherwise be 
easy for programming novices. Such a design solution may benefit other learning networks where novices are 
required to work with concepts in similar ways. Our analysis suggests that a design solution that allows the 
object of discussion to come to the forefront of the environment helps students learn through discussions about 
their understandings, drawing on each others’ work, and thereby engaging in processes of knowledge-building.  
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