
1. Introduction

In large-scale power systems with a high penetration of
wind power, the intermittent output of the generation
side often has a negative impact on the power balance
and hence the stability of the power system. Therefore,
to counterbalance this intermittency, methods of making
the consumption side more flexible are currently being
perused. One approach is to use the thermal mass in cold
storages to absorb excess power generation from
renewable energy sources by temporarily lowering the
temperature setpoint. However, the thermal mass of both
residential and office buildings can also offer this type of
uni-directional energy storage wherever electrical
heating is utilised. By allowing the indoor temperature
in a typical Danish detached household to vary by one
degree around a given reference, a storage capacity of
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around 10 kWh can be achieved. Such capacity may
seem quite modest, but with aggregation of several
households a quite large capacity can be utilised. To be
able to utilise the potential flexibility from detached
buildings, estimates on future power consumption for
heating in buildings and future available capacity are
required, and hence adequate heat dynamic models of
buildings are needed. This paper presents a non-linear
model for prediction of the indoor air temperature in an
intelligent office building, based on electric heating and
weather input.

Adequate models for the heat dynamics of buildings
also have applications in other fields. Among these are
real-time control of indoor temperature given a varying
cost of electricity, e.g. using price signals. Here, heat
dynamic models of buildings can be utilised to
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ABSTRACT

This paper presents a non-linear heat dynamic model for a multi-room office building with air
infiltration. Several linear and non-linear models, with and without air infiltration, are
investigated and compared. The models are formulated using stochastic differential equations and
the model parameters are estimated using a maximum likelihood technique. Based on the
maximum likelihood value, the different models are statistically compared to each other using
Wilk's likelihood ratio test. The model showing the best performance is finally verified in both
the time domain and the frequency domain using the auto-correlation function and cumulated
periodogram. The proposed model which includes air-infiltration shows a significant
improvement compared to previously proposed linear models. The model has subsequently been
used in applications for provision of power system services, e.g. by providing heat load reduction
during peak load hours, control of indoor air temperature and for generating forecasts of power
consumption from space heating.

Keywords:

Non-linear modelling, 
heat dynamic modelling, 
stochastic differential equations, 
power systems, 
air infiltration 
URL:
dx.doi.org/10.5278/ijsepm.2015.7.5

dx.doi.org/10.5278/ijsepm.2015.7.5


60 International Journal of Sustainable Energy Planning and Management Vol. 07 2015

A Non-linear Stochastic Model for an Office Building with Air Infiltration

guarantee that the indoor comfort of the residents of the
building is not compromised in economic optimisation
of electricity consumption. Furthermore, another
application is estimation of specific building
characteristics like the UA-value of walls and windows
and heat capacities. These estimates can be used to form
a strategy for how a building can be renovated with
respect to energy savings.

The model proposed in this paper is for a specific
building called PowerFlexHouse located at the DTU
Risø Campus in Denmark. However, the model and
estimation technique can be applied to similar types of
buildings. So far, the model has been used in several
smart grid applications, where flexible demand from
PowerFlexHouse is provided within a small power
system, see for examples [1] and [2]. Another
application of the heat dynamic model is prediction of
power consumption from electrical heating, given a
weather forecast and an indoor temperature reference.

Following the pioneering work by [3] and [4] on the
use of data for modelling the heat dynamics of
buildings, several studies have been carried out using
linear stochastic differential equations, see for example
[5] and [6]. Likewise, several linear models have been
proposed for the heat dynamics of PowerFlexHouse, see
[7], [8] and [9]. However, none of these studies have
included the non-linear effects that the wind has on the
convection from the house envelope and on the natural
ventilation of the building. Thus, this paper focusses on
modelling the heat loss due to natural ventilation as
being non-linearly dependent on the wind speed.
Likewise, the convection from the house envelope is
studied to see if the convection from the surface is non-
linear. 

To these authors knowledge, no previous work has
been carried out in using non-linear stochastic
differential equations for modelling the air infiltration in
buildings. However, it should be noted that a similar
approach has been used to estimate the non-linear heat
exchange from photovoltaic modules in [10] and [11].

The outline of this paper is as follows; Section 2 gives
an introduction to non-linear stochastic differential
equations and parameter estimation. This section also
describes PowerFlexHouse, which has formed the basis
for data gathering and the building for which the
parameter estimation is carried out. Next, a generic
model is derived using prior physical knowledge about
heat transfer. Section 3 presents the results from the
parameter estimation and the model is verified using

residual analysis of the model’s one step predictions.
Finally, in Section 4 the results are discussed together
with possible model extensions and applications.

2. Methodology

In this section, an outline is given on how a grey-box
approach can be used to formulate a non-linear model
for the heat dynamics of an office building. The specific
building of interest is an intelligent office building,
called PowerFlexHouse, which is located on the DTU
Risø campus in Roskilde, Denmark. The method uses
non-linear stochastic differential equations to model the
dynamics of an observable indoor temperature state
variable as well as the non-observable temperature state
variables of the electrical space heaters and building
envelope. The model is formulated as a lumped model,
thus assuming a homogeneously distributed temperature
in each of the modelled media. By using a grey-box
approach, prior physical knowledge is first used to
formulate a set of differential equations. Then statistics
on the collected data are used to estimate model
parameters, thus combining white-box and black-box
modelling. An advantage of this approach is that the
physical parameters, i.e. heat capacity and UA-values,
are directly given after parameter estimation. This
means that the results can be directly compared with
results found for similar buildings as well as different
types of buildings.

2.1. Model type and parameter estimation 
Given a time series of N temperature observations,

(1)

a mathematical model of the heat dynamics of
PowerFlexHouse should be formulated such that the model
describes the dynamics as represented by the time series
(1). The heat dynamic model will be formulated using non-
linear stochastic differential equations. The reason for
using stochastic differential equations is to compensate for
minor influences not encompassed by the model or
unrecognised input, e.g. precipitation or noisy input to the
system. Thus, a stochastic process, which accounts for the
variations not fully described by a deterministic model, is
added to a deterministic model yielding the following set
of stochastic differential equations,

(2)d t dt t dt t t t tT f T u u= +( , , , ), ( , , )θθ σσ θθ ωω

TN N N N= − −[ , , ,..., ]T T T T1 2 0



where f (.) is a non-linear function called the drift term,
Tt is a vector containing the modelled temperature states
of the building at time t, ut is a vector containing input
to the system and θ is a vector containing the unknown
parameters. In the following, the parameters in θ are
assumed to be time-invariant and ω t is assumed to be a
standard noise process with independent Gaussian
distributed increments, more specifically a Wiener
process. σ (ut, t, θ) is the diffusion term of the process.
For an elaborated introduction to stochastic differential
equations we refer to [12].

Since only some of the states in (1) are observable,
and the sampling is conducted in discrete time, a
measurement equation is introduced

(3)

where Tm,k is the k’th measured output, h(.) is a non-
linear function linking the modelled states in (2) with the
measured output and ek is the measurement error. In the
following it is assumed that the indoor air temperature
state is directly measured, thus h(.) is a linear function
picking out the measured temperature states. Hence, (3)
simplifies to

(4)

were C is a matrix picking out the measured temperature
states.

The maximum likelihood estimator has been used as
an estimator for θ, which provides the most likely
parameter set, θ̂, describing the process observed in Tm,k

in (3), see [13]. That is, we find parameter estimates
such that the likelihood function or the joint probability
distribution function is maximised. For a given time
series (1) the joint likelihood function is given by

(5)

where the rule P (A ∩ B) = P (A|B) P (B) has been
applied N-times to form the joint likelihood function as
the product of conditional densities. On the assumption
that both ω t in (2) and ek in (3) are normally distributed
and mutually independent, the conditional density
function for a linear model is also normally distributed
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and thus fully characterised by its mean and variance. In
the non-linear case it will be assumed that the
conditional densities in (5) are approximately Gaussian
and this assumption can be validated. Introducing the
innovation or one step prediction error,

(6)

where T̂ k|k–1 is the estimated mean given by

(7)

and with the covariance

(8)

the likelihood function in (5) can be formulated as

(9)

where n = dim (Tm). The innovation and covariance in
(6) and (8), respectively, can be calculated using an
Extended Kalman filter, see e.g. [14] or [15].

2.2. Continuous time stochastic modelling
A procedure for optimisation of (9) with respect to θ has
been implemented in the software tool CTSM -
Continuous Time Stochastic Modelling. CTSM is a
computer program for continuous time stochastic
modelling, which uses a quasi-Newton method to find
the maximum likelihood estimate, θ̂. The software is
distributed freely and can be downloaded from the
CTSM webpage, [16]. For further information about
parameter estimation using CTSM, see [16] and [17].

2.3. Model Validation
It follows from (5) that, for an adequate model, the
conditional densities are independent and consequently
the one step ahead residuals can be used for model
validation. The independence of the residuals can be
tested both in the time domain using the auto-correlation
function and in the frequency domain using the
cumulated periodogram, see [18]. Residual analysis on
the proposed models is conducted in Section 3.
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2.4. PowerFlexHouse and SYSLAB
PowerFlexHouse is an office building located at the DTU
Risø Campus near Roskilde in Denmark. The building
has been equipped with various types of sensors and
actuators, which allows it to be controlled as a flexible
load in the small power system of SYSLAB. SYSLAB is
a laboratory and an experimental platform for research in
smart-grids and a part of PowerLabDK1. Depending on
the state of the power system, PowerFlexHouse can
postpone or accelerate its energy needs, thus offering
power system balance services within SYSLAB.

PowerFlexHouse comprises eight rooms, including a
large meeting room in the centre of the building. Each
room is individually monitored and controlled and is
equipped with a number of different types of sensors and
actuators, including

• Temperature sensors
• Motion sensors
• Window- and door sensors
• Actuators for electrical heaters
• Actuators for lighting
• Actuators for opening windows and doors
The sensors and actuators allow the building to be

monitored and controlled seamlessly from a house
controller. Also, the actuators for the windows, doors and
lighting can be used for emulations of residents being
present. A picture of PowerFlexHouse and its layout can
be seen in Figure 1 (a) and Figure 1 (b), respectively.

In addition to the indoor sensor input, the house
controller receives data from a weather mast next to
PowerFlexHouse. The weather mast collects data on
outdoor temperature, horizontal solar irradiance, as well
as wind speed and direction. The collected data is stored
in a database together with the indoor sensor states.

A house controller has been developed to handle all
communication with sensors and actuators. The
controller also implements a high level heat controller for
the whole building. Additionally, the house controller is
responsible for data acquisition and for storing the house
state, i.e. all sensor states, in a database at a sampling rate
of 10 seconds. The house controller enables different
control strategies to be easily implemented and tested,
and currently a number of control strategies have been
implemented; from a simple thermostatic controller to a
high level model predictive controller that optimises
heating over the following 24 hours with respect to a
given price signal for the cost of electricity.

The 120 m2 building is a pavilion-type building,
standing freely on concrete slabs, leaving a gap between
the ground and the base of the building of approximately
40 cm. The gap has been enclosed with planks. The
house is placed such that the south-facing facade, which
has a large window area, is turned 17° to the west from
direct south. This means that the indoor temperature is
highly dependant on the solar irradiance, especially
around noon. The width of the outer walls is 170 mm
and consists of 100 mm insulation, sandwiched between
a plywood facade and interior plasterboards. The inner
walls are 70 mm thick and mounted with plasterboards
on both sides, sandwiching 50 mm of insulation 
in-between. The heating for the building comes from ten
electrical space heaters, ranging from 750 W to 1,250
W, with a total installed heating power of 9,750 W. For
the data generated in this paper, a number of heaters
were selected to generate a given total output. The
selected heaters were controlled synchronously using a
PRBS controller implementing a pre-defined Pseudo-
Random Binary Sequence (PRBS). Using PRBS-signals
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Figure 1: PowerFlexHouse south facing facade (a) and building layout (b).
1 http://www.powerlab.dk/
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as input to the system ensures optimal conditions for
system identification. For a further description about
PRBS signals, see [19].

2.5. PowerFlexHouse Model
The heat dynamic model for PowerFlexHouse presented
in this paper has three temperature states for the
building. These states reflect the temperature of 
the interior thermal mass, Ti, the average temperature 
of the ten space heaters, Th, and the temperature of the
building envelope, Te. Prior physical knowledge is used
to formulate a mathematical model of the thermal flow
between these three states and the ambient environment.
Sub-models for conduction, convection and ventilation
are used to compile a total model.

The heaters are hanging freely in the indoor air, thus
exchanging heat with the interior media only. The heat
transfer is caused by convection from the heater surface.
From this the differential equation describing the
temperature of the heaters, can be formulated as

(10)

where Ch is the thermal heat capacity of the heaters, Φh

is the electrical input and Rih is the convective resistance
to transfer heat between the interior thermal mass and
the heater.

Likewise, the differential equation describing the
temperature of the house envelope is given by,

(11)

where Ce is the thermal heat capacity of the building
envelope, Rea and Rie are the thermal resistances related
to the combined conductive and convective heat transfer
from the envelope to the ambient environment and
interior, respectively, Ta is the ambient temperature and
Ae is the effective area of the house envelope that is
absorbing solar irradiance Φs, which is measured on the
horizontal plane.

Finally the differential equation for the interior mass is,

(12)
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where Ci is the thermal heat capacity of interior mass,
i.e. air, inner walls, furniture, etc. Ria is the resistance to
transfer heat directly to the ambient environment,
primarily due to natural ventilation of the building, and
Aw.Φs is the solar irradiance through the windows, where
Aw is the effective size of the windows and Φs is the
horizontal solar irradiance.

Due to the wind influence on the outside of the
building envelope, both the convection from the
building envelope and natural ventilation changes from
free to forced, hence the resistance to transfer heat can
not be assumed to be linear as formulated in (11) and
(12), but should instead be a non-linear function of the
wind speed. Therefore, in the following the resistances
are assumed to take the form,

(13)

where Wspd is the wind speed and kx ≥ 0 are unknown
parameters to be estimated. For k2, k4 = 0, we find the
linear relation as formulated in (11) and (12). For k2, k4 ≠
0, both equations in (13) assume the heat transfer to be
purely convective and hence conductive heat transfer is
neglected. This assumption only holds if the thermal mass
of the building envelope is located in the outer surface of
the envelope and not inside the walls; however, the
approximation is used to investigate whether convective
heat transfer is predominant over conduction.
Alternatively, a constant term could be added to (13),
which would account for the conductive heat transfer.

In Figure 2 the total formulated model, as described by
(10) to (12), can be seen as an equivalent RC-network,
where electric resistors equal resistance to transfer heat,
electric capacitance equals heat capacity, flow of
electricity equals flow of heat and voltage differences
equal temperature differences. The non-linear resistors
have been marked with arrows, indicating varying
resistance, i.e. varying with wind speed. 

Based on physical knowledge, it can be argued that
heat is transferred through the building envelope, but
whether the natural ventilation is significant and should
be included in the model is a bit more unclear. Therefore
different combinations of linear, non-linear and no
ventilation, i.e. Ria = ∞, have been studied. These results
are presented in Section 3.
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Assuming that the indoor measured temperature is a
direct representative for the interior state temperature,
the model takes the form, 

where Ria(Wspd) and Rea(Wspd) can take the form as
either linear or non-linear as defined in (13). Also, Ria

(Wspd) → ∞ for Wspd → 0, implying no heat transfer due
to natural ventilation.

2.6. Data
Four experiments were conducted in PowerFlexHouse
in the period from February to March 2008. The
purpose of the experiments was to collect data for
model parameter estimations. The only input to the
system in (14) that can be directly manipulated is
the heat input from the electrical space heaters. The
heaters were controlled synchronously, i.e. all heaters
were on or off in the same time instance, using a binary
signal generated as a Pseudo Random Binary
Sequence. A different PRBS signal was generated for
each experiment and each signal was designed such
that the heat input from the electrical space heaters
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would excite the temperature states in the time domain
around where time constants were expected to be
found. The number of heaters being controlled was
chosen such that the temperature in any room would
not exceed 30 0C at any time during the experiment.
This was done to prevent the house controller from
being overridden by the internal space heater
thermostat which only allows room temperatures up to
30 0C, after which the heater switches off. The time
series of the observed interior temperature Tm,k,
ambient temperature Ta, heat input Φh and solar
irradiance Φs are plotted in Figure 3. 

The dynamics of the interior temperature state can be
seen to vary with the external input. Especially the
PRBS-controlled heat input can be seen in the variation
of the interior temperature. Also, the effects from the
daily variation in ambient temperature and solar
irradiance can be clearly seen in the figures.

Wind data was also collected during the four
experiments. The wind speed and direction are depicted
in Figure 4, where the wind measurements are plotted.
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Each dot in the figure represents the direction from
which the wind is blowing. The plot shows that the wind
in the period of the experiments came mainly from the
west, with measured wind speeds of up to 25 m/s. To
remove high order frequency variations, the wind speed
and direction have been filtered with a low-pass filter.

The model of the interior temperature, i.e. (12), only
takes one indoor temperature, i.e. Ti. As a representative
temperature, the average indoor air temperature of the
eight rooms has been used. Instead of weighing the
temperatures equally, other weights could have been
applied to weight larger rooms higher. For example, this
could have been done using principal component
analysis; however, no significant improvement in log-
likelihood has been observed using different weights.

3. Results

This section presents the model parameter estimates for
four different non-linear models and compares the results
with previously proposed linear models from [8] and [7].
The maximum of the log-likelihood for the non-linear
models is compared to the log-likelihood found for
similar linear models Also, the best performing model is
verified in both the time domain and frequency domain.
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Figure 4: Wind rose data collected during the experiments sampled

at intervals of 5 minutes. The wind direction relative to the house

can be deducted from the outline of PowerFlexHouse 

in the middle of the plot.

3.1. Parameter Estimates
Six different combinations of non-linear and linear heat
transfer, with and without air infiltration, were examined
and model parameters estimated for each model. The
parameter estimates, together with their respective
standard deviations, are presented in Table 1. In 
the table, the models have been named Model A to F,
where Model A is the linear reference model as
presented in [7], Model B is a linear reference model
with natural ventilation presented in [8] and Model C to
F are non-linear variations of Model A and B.

The table shows that the parameter estimates are
much alike for the six models, except Ria for Model B
and E. As seen from the table, the two estimates are both
associated with a relative high standard deviation,
signifying that they could potentially be the same.
Likewise, the relative standard deviations on Rih and Ch

are quite high, thus implying that the modelling
uncertainty on Th is high and that the model therefore
can not be used to estimate the temperature of the space
heaters. However, together these two estimates simply
imply a fast transfer of heat from the heater to the indoor
air, i.e. a fast discharge of the capacitor.

The highest log-likelihood is achieved by Model C
and F, were the natural ventilation is non-linear and the
convection from the envelope is modelled as linear and
non-linear, respectively.

Since the linear models are sub-models of the non-
linear models, a statistical test can be used to verify
whether the increase in log-likelihood is significant or
not. For this, Wilk's likelihood ratio test can be used, see
[20]. The test is given by,

(15)

where LL0 and LL1 is the log-likelihood for the sub-
model and sufficient model, respectively. As the number
of observations increases, λ converges to a 
χ2-distribution with k-degrees of freedom, where k is the
difference in number of model parameters for the two
models. From this, the p-values in Table 1 have been
found. The log-likelihood values show that all the non-
linear models are significantly better than the linear
models, and that Model C and F have the lowest 
p-values, when compared to Model A.

For Model C and F, the model estimates for k1 and k2

are almost the same. Plotting the resistance to natural
ventilation Ria using (13) reveals that the resistance is

λ = − −2 0 1( )LL LL
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Name Model A Model B Model C Model D Model E Model F

Ria ∞ Linear Non-linear ∞ Linear Non-linear
Rea Linear Linear Linear Non-linear Non-linear Non-linear

Coefficient Estimates

Ae, [m2] 23.15 22.64 20.93 21.37 21.02 21.09
(3.91) (3.60) (3.00) (2.86) (2.90) (3.01)

Aw, [m2] 9.66 9.55 9.52 9.23 9.15 9.48
(0.70) (0.80) (0.67) (0.61) (0.68) (0.70)

Ce, [kWh/°C] 8.12 7.81 6.64 7.14 6.93 6.69
(1.03) (1.18) (0.79) (0.74) (0.81) (0.79)

Ch, [kWh/°C] 0.000367 0.000367 0.000370 0.000372 0.000372 0.000371
(0.000526) (0.000569) (0.000359) (0.000534) (0.001780) (0.000574)

Ci, [kWh/°C] 2.48 2.48 2.46 2.45 2.45 2.46 
(0.06) (0.06) (0.06) (0.06) (0.06) (0.06)

Rea, [°C/kW] 2.24 2.48 2.91 – – – 
(0.16) (0.67) (0.33) (–) (–) (–)

Rie, [°C/kW] 0.83 0.85 0.87 0.81 0.82 0.87 
(0.04) (0.06) (0.05) (0.04) (0.05) (0.05)

Ria, [°C/kW] – 40.33 – – 51.35 –
(–) (100.99) (–) (–) (63.03) (–)

Rih, [°C/kW] 898.27 898.35 898.42 898.15 898.37 897.45 
(1287.80) (1389.20) (875.97) (1287.90) (4289.10) (1384.20)

k1(Ria) – – 0.0141 – – 0.0152 
(–) (–) (0.0113) (–) (–) (0.0110)

k2(Ria) – – 0.9032 – – 0.9366 
(–) (–) (0.2880) (–) (–) (0.3168)

k3(Rea) – – – 0.3353 0.3053 0.3343
(–) (–) (–) (0.0314) (0.0488) (0.0385)

k4(Rea) – – – 0.1857 0.1954 0.0391
(–) (–) (–) (0.0486) (0.0575) (0.0632)

Log-likelihood 9242.27 9242.32 9256.94 9247.23 9247.23 9257.09
Parameters 15 16 17 16 17 18

p-value Model A Model B Model C Model D Model E Model F

Model A – 0.751 4.25 × 10–7 1.68 × 10–3 6.96 × 10–3 1.64 × 10–6

Model B – – 6.39 × 10–8 – 1.71 × 10–3 3.85 × 10–7

Model C – – – – – 0.585

very dependent on the wind speed as seen in Figure 5,
where also the obtained constant estimate from Model B
is plotted. Likewise, a plot of the non-linear Rea from
Model F, together with the constant estimate from
Model B are presented.

The plot shows that Ria is much more dependent on
the wind speed than Rea, and that the non-linear
estimates are close to their respectively constant
estimates, as obtained in Model B, for wind speeds
around 2–3 m/s, which is quite close to the average
measured wind speed. Furthermore, Ria increases
rapidly when the wind speed goes towards zero. Hence,
it can be concluded that for wind speeds below 5 m/s, the

heat loss due to ventilation is quite small compared to
conduction through the envelope. For wind speeds
around 20 m/s, the resistance is approximately of the
same size as the heat loss through the envelope, and as
the wind speed increases the resistance drops and the air
infiltration becomes the dominant factor in the heat loss
of the building. This is consistent with the theory for
natural ventilation. Furthermore, from the plot is seen
that Rea is nearly constant relative to Ria which implies
that the heat transfer through the envelope is
approximately linear and hence behaves like conductive
heat transfer. This further strengthens the argument for
Model C being the most adequate model.

Table 1: Model parameter estimates and their respective standard deviation noted in brackets.
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3.2. Model Validation
The formulation of the model in Section 2 assumed that
ωt is independent for non-overlapping time intervals
and that ek is white noise. Hence, the residuals for the
one step prediction in (6) should resemble white noise.
Using tests in both the time domain and frequency
domain, all the non-linear models have been validated.
In Figure 6, the auto-correlation function is plotted for
the one step predictions for Model C. The auto-
correlation function shows some correlation at lags 1
and 4, which fall outside the 95% confidence interval;
however, they are still quite small, hence indicating that
the residuals do resemble a white noise process. 

Also the spectrum for Model C is seen to be
approximately equally distributed over all frequencies,
which is also apparent from the cumulated periodogram,
where the cumulated periodogram is seen to fall within
the 95% confidence interval, except around 0.4, where
the confidence interval is broken. The exact cause of this
has not been identified, but could be caused by the time
delay from the propagation of heat in the temperature
sensor; hence, the temperature sensor should be
modelled separately using an additional temperature
state. The three plots in Figure 6 imply that the model
can certainly be improved, but also that the residuals to
a large extent do resemble a white noise process and that
Model C thus gives an adequate description of the heat
dynamics of PowerFlexHouse.

4. Discussion

The study presented in this paper has shown that non-
linear stochastic differential equations can be used to
describe the non-linear effects caused by forced
ventilation or infiltration in a thermally light building. A
parameter estimation technique for a non-linear state
space model has been demonstrated for a specific
building, based on data collected in the office building
and from a weather mast on-site.

From the p-values in Table 1, it can be seen that the
non-linear models are significantly better than any
previous linear models of the heat dynamics of
PowerFlexHouse as suggested in [7] and [8]. Also from
the log-likelihood estimates it can be seen that Model C
and F achieve the highest log-likelihood. However, with
an equally high log-likelihood and with one additional
parameter in Model F, it can be concluded that Model C,
with 16 parameters, is sufficient to describe the heat
dynamics of PowerFlexHouse. Also, the correlation
matrix of the estimates for Model F has off-diagonal
values close to one, which implies that the model is over-
parameterized. This further supports that Model C is the
best performing model. Additionally it is seen that with
an increasing number of parameters in the model, the
log-likelihood is seen to stagnate, which further confirms
that the model becomes over-parameterized and that 16
parameters are sufficient to describe the heat dynamics.

Unfortunately, no building data is available for
PowerFlex-House that could confirm whether the
parameter estimates are correct. However, the estimates
can be compared to expected building data given by
building regulations from the time of construction, to see
whether they comply with the requirements. For
example, the required u-values at time of construction
were uwindow = 2.90 W/(°Cm2) and uwall = 0.40 W/(°Cm2)
for windows and walls respectively. By approximating
the surface of PowerFlexHouse with a rectangular box
with dimension 15 m × 8 m × 3 m, the total surface of the
building is A = 378 m2 of which approximately 
27 m2 are windows. From this, the weighted u-value of
the whole building can be calculated as:

Furthermore, by assuming a wind speed of 3 m/s
giving Ria = 23.6°C/kW and a steady state in the heat

u =
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Figure 5: Comparison between the convective resistance through

the building envelope, Ria, and from the outside surface, Rea, 

versus wind speed, Wspd.



transfer from the building, the total thermal resistance
from the building can be calculated as,

which is equivalent to a u-value around 0.8W/(°Cm2)

. Considering the wear of the buildingu
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envelope, including draughty air registers, the estimated
value is not far from what was required by the building
regulations at the time of construction. Moreover, the
total heat capacity of the building is estimated to around
9 kWh/°C, which is equivalent to 75 Wh/(°C m2). This
value falls in the range of what is characterised as
thermally light buildings, which is expected considering
the light construction materials that the building is
composed of. Finally, the window area of
PowerFlexHouse is approximately 27 m2. Assuming
that the effective window area is approximately 60% of
the real window area, as were used in [5], the estimates
of Aw are also close to what would be expected.
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Figure 6: Auto-correlation, spectrum and cumulated periodogram  for the one step prediction for Model C.
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4.1. Model Extensions
During this study it was also investigated whether the
model could be improved by projecting the wind vector
onto the orthogonal of each surface of the building. This,
however, would require an additional six parameters in
the model, which makes the model highly over-
parameterized and reasonable parameter estimation
impossible. As an alternative approach the model
parameters were estimated four times using the
projected wind speed as the basis for parameter
estimation, instead of the general wind speed. This
revealed that a slightly higher log-likelihood could be
achieved when using the wind speed projected on the
south-ward direction, indicating a higher sensitivity to
south-ward wind compared to the other directions. It can
be argued that the result is reasonable, since
PowerFlexHouse is sheltered from the north and east by
other buildings and to the west by trees and bushes.
However, another argument against the model extension
could be that the model estimates come from a data-set
where the wind has mainly been blowing from the west.
The decision whether the first or second argument holds
is left for another study.

4.2. Applications
As stated in Section 1, the model is used in a heat
controller to ensure indoor comfort and to predict power
consumption. However, the model technique presented in
this paper can be applied in many other areas; for example
for estimating specific building parameters which are
directly given by the estimation technique, or for
estimation of a given building's annual energy need for
heating. Furthermore, the model can also be used to
estimate heat loss due to air infiltration though the
envelope. Assuming steady state in the envelope, i.e. no
net flow into the envelope, and a temperature difference
at 10°C over the envelope, the heat loss distribution
between the infiltration loss and loss through the envelope
can be calculated. This is presented in Table 2, where the
heat loss due to natural ventilation increases rapidly for

wind speeds over 10 m/s and for a wind speed above 25
m/s, 50% of the total heat loss is due to ventilation.

The results presented in Table 2 show that natural
ventilation should be minimised, e.g. by closing air vents
or registers when the wind speed increases above 10–15
m/s. At present, the air registers in PowerFlexHouse are
manually controlled, but installing actuators to close the
registers when the wind speed reaches a given threshold
would greatly reduce heat loss due to air infiltration.
However, this type of control would change the dynamics
of the heat transfer through the house envelope and
another functional description of Ria should most likely be
used. An investigation of the heat transfer as a function of
the state of the air registers is left as a subsequent study.

Acknowledgement

The work was partly funded by DSF (Det Strategiske
Forskn-ingsråd) through the ENSYMORA (DSF No.
10-093904) project, which is hereby acknowledged.

References

[1] Y. Zong, D. Kullmann, A. Thavlov, O. Gehrke, H. W.
Bindner, Application of model predictive control for active
load management in a distributed power system with high
wind penetration, Transactions on Smart Grid, IEEE 3 (2012)
1055–1062.

[2] A. Thavlov, H. Bindner, Utilization of flexible demand in a
virtual power plant set-up, IEEE Transactions on Smart Grid
6 (2) (2015) 640–647. doi:10.1109/TSG.2014.2363498.

[3] R. Sonderegger, Diagnostic tests to determine the thermal

response of a house, ASHRAE Transactions 91.

[4] A. Rabl, Parameter estimation in buildings; methods for

dynamic analysis of measured energy use, Journal of Solar

Energy Engineering 110 (1988) 52–66.

[5] H. Madsen, J. Holst, Estimation of continuous-time models

for the heat dynamics of a building, Energy and Buildings 22

(1995) 67–79.

[6] K. K. Andersen, H. Madsen, L. H. Hansen, Modelling the heat

dynamics of a building using stochastic differential equations,

Energy and Buildings 31 (2000) 13-24.
[7] P. Bacher, H. Madsen, Identifying suitable models for the heat

dynamics of buildings, Energy and Buildings 43 (2011) 1511–1522.
[8] A. Thavlov, Dynamic optimization of power consumption,

Master's thesis, DTU IMM, Technical University of Denmark
(2008).

[9] A. Thavlov, H. W. Bindner, A heat dynamic model for
intelligent heating of buildings, International Journal of
Green Energy 12 (3) (2015) 240–247. doi:10.1080/
15435075.2014.891516.

International Journal of Sustainable Energy Planning and Management Vol. 07 2015 69

Anders Thavlov and Henrik Madsen

Table 2: Percent-wise heat loss due to natural ventilation and

through building envelope.

Wind speed, [m/s] 10 20 30

Ria, [°C/kW] 8.86 4.74 3.29
Renvelope, [°C/kW] 3.78 3.78 3.78
Ventilation heat loss, [%] 29.90 44.37 53.50
Envelope heat loss, [%] 70.10 55.63 46.50

doi:10.1080/15435075.2014.891516


[10] M. Jiménez, H. Madsen, J. Bloem, B. Dammann, Estimation

of non-linear continuous time models for the heat exchange

dynamics of building integrated photovoltaic modules, Energy

and Buildings 40 (2008) 157–167.

[11] N. Friling, Stochastic modelling of building integrated photovoltaic

modules, Master's thesis, Informatics and Mathematical

Modelling, Technical University of Denmark, DTU, Richard

Petersens Plads, Building 321, DK-2800 Kgs. Lyngby (2006).

[12] B. ∅ksendal, Stochastic Differential Equations, 4th Edition,

Springer, Berlin, 1995.

[13] N. R. Kristensen, H. Madsen, S. B. Jørgensen, Parameter

estimation in stochastic grey-box models, Automatica 40 (2)

(2004) 225–237. doi:10.1016/j.automatica.2003.10.001.

[14] A. H. Jazwinski, Stochastic Processes and Filtering Theory,

Academic Press, New York, 1970.

[15] P. S. Maybeck, Stochastic Models, Estimation and Control;

Vol 1,2,3, Academic Press, New York, 1982.

[16] Continuous Time Stochastic Modelling webpage,

http://www.ctsm.info.

[17] N. R. Kristensen, H. Madsen, CTSM 2.3 - Mathematics

Guide. URL http://www2.imm.dtu.dk/ctsm/MathGuide.pdf

[18] H. Madsen, Time Series Analysis, Chapman & Hall, 2008.

[19] K. R. Godfrey, Correlation methods, Automatica 16 (1980)

527-534.

[20] H. Madsen, P. Thyregod, An Introduction to General and

Generalized Linear Models, Chapman & Hall, 2011.

70 International Journal of Sustainable Energy Planning and Management Vol. 07 2015

A Non-linear Stochastic Model for an Office Building with Air Infiltration

http://www.ctsm.info
http://www2.imm.dtu.dk/ctsm/MathGuide.pdf


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


