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ABSTRACT

Currently, there is an increasing interest for driving cycles (DCs) that truly represent the driving 
pattern of a given region aiming to evaluate the energy efficiency of electric vehicles and identify 
strategies of energy optimization. However, it has been observed increasing differences in the 
energy consumption reported using type-approval DCs and the observed in the vehicles under real 
conditions of use. This work compared the Micro-trips, Markov-chains and the MWD-CP 
methods in their ability of constructing DCs that represent local driving patterns. For this purpose, 
we used a database made of 138 time series of speed obtained monitoring during eight months a 
fleet of 15 transit buses operating on roads with different levels of service, traffic and road grades, 
under normal conditions of use. Then, we used 16 characteristic parameters, such as mean speed 
or positive kinetic energy, to describe the driving pattern of the buses’ drivers monitored. 
Subsequently, we implemented three of the most widely used methods to construct DCs using 
this common database as input data. Finally, we evaluated the degree of representativeness of the 
local driving pattern contained in each of the obtained DCs. Toward that end, we defined that a 
DC represents a driving pattern when its characteristic parameters are equal to the characteristic 
parameters of the driving pattern. Therefore, we used as criteria of representativeness the relative 
differences between paired characteristic parameters and observed that the MWD-CP method 
produced the DC that best represents the driving pattern in the region where the buses were 
monitored, followed by the DC produced by the Micro-trips method. 

1. Introduction

It has been hypothesized that differences in the observed 
energy consumption from electric vehicles (and fuel 
consumption and tailpipe emissions from diesel or 
gasoline-fueled vehicles) with respect to the measured 
during the type-approval tests are mainly due to the lack 
of representativeness of the local driving pattern con-
tained in the type-approval driving cycles used in these 
tests [1]. This situation affects the dimensioning of the 
vehicle power train and of the energy storage system [2].

A driving cycle (DC) is a synthesized representation 
of the driving patterns in a given road network. In most 
cases, the DCs are displayed as a velocity vs. time series 
[3]. As it represents the driving pattern of the region 
under consideration, the DCs are frequently used to 
evaluate the energy consumption and the tailpipe 
emissions of the vehicles [4–6]. Therefore, the DC 
representativeness should be understood as the DCs 
ability of representing the driving patterns of a region, 
and its capacity of reproducing the energy consumption 
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energy demand, etc.) or energy consumption scenarios 
of a region, similar to the studies carried out by Setiartiti 
et al. [14] and Juul et al. [6]. 

DC representativeness is mainly affected by three 
factors: i) the quality and quantity of vehicle operation 
data used to construct the DC. ii) The method used to 
construct the DC. iii) The metrics used to evaluate the 
DC representativeness [15].

Currently, the Global Position System (GPS) allows 
obtaining reliable vehicles operation data with a sampling 
frequency higher than 1 Hz. Then, improvements in DC 
representativeness should be obtained through 
improvements in the methods used to construct the DCs 
and the metrics used to guarantee their representativeness. 

The existing DC construction methods can be 
classified as stochastics and deterministic. Within the 
stochastics methods, the DCs are constructed splicing 
trips segments or states, which are quasi-randomly 
selected from trips segments or states database made 
from the trips sampled [16]. In the case of the determi- 
nistic method, one of the many monitored trips is 
selected as the representative DC. 

In all methods, driving patterns and DCs are described 
by a set of metrics named characteristic parameters 
(CPs). They are variables based on speed and time such 
as average speed, average positive acceleration, positive 
kinetic energy, etc. [3]. A DC is said to be representative 
of a driving pattern when the CPs of the DC are similar 
to the CPs of the driving pattern. Therefore the DC 
representativeness is evaluated by the average relative 
differences of corresponding CPs. 

No study has attempted to compare the existing 
methods in their ability of constructing DCs that truly 
represent the local driving patterns. We addressed this 
gap of knowledge and here we report the following 
contribution: using a common trips database, this study 
compares three common methods of constructing DCs: 
Micro-trips, Markov-chains and MWD-CP.  The results 
obtained are useful for researchers who need to decide 
about the DC construction method to choose in order to 
obtain truly representative DCs. The use of representative 
DCs on the design and optimization of vehicle energy 
systems will lead to effective energy management 
strategies. 

This paper is arranged as follows. Section 2 describes 
the approachr followed to evaluate the 3 DC construction 
methods. There, we describe: i) the monitoring campaign 
carried out to collect vehicle driving data in a region of 

and the tailpipe emissions from the vehicles that follow 
that DC. In this context, DCs are independent of the 
vehicle technology. The DCs for electric vehicles are the 
same that the DCs for gasoline or diesel-fueled vehicles. 

Besides the use of DC in the energy and environmental 
assessment of vehicles, they are also used for the design 
of vehicle components and systems, especially those 
related to the vehicle powertrain. This is due to the fact 
that DCs contain the instant loads and energy demanded 
by the road to the vehicle in the given region [7,8]. 
Consequently, DCs can be used to identify strategies to 
reduce energy consumption in vehicles. For example, 
they can be used to evaluate the potential reduction in 
GHG (Green House Gases) that can be attained by 
implementing public policies related to the use of 
electric vehicles or biofuels [9,10]. Furthermore, they 
can be used to optimize the power train design of 
electric and hybrid vehicles in terms of battery size [11] 
since they capture the characteristics of the routes, 
congestion level, driving behavior, which are factors that 
affect the way that the stored energy is delivered. Energy 
consumption models for powertrain optimization, like 
the VT-CPEM, require of representative DC data to 
compute the instantaneous power consumed and the 
state of charge of electric batteries [12]. 

Another important application of DCs is the study of 
variations in the driving behavior caused by the use of 
new vehicle motorization technology. Berzi et al. [13] 
concluded that when people drive an electric vehicle, the 
frequency of strong accelerations events increased due 
to the absence of the engine noise, especially at low-
speed conditions. Finally, DCs contain the energy 
consumption patterns and therefore they can be used to 
design energy logistics strategies (charging points, 

List of symbols and acronyms
CP Characteristic parameter

DC Driving cycle

Mk Markov-chains method

MT Micro – trips method

MWD-CP
Minimum weighted difference - 
characteristics parameters method

QoF Quality of fit

SAPD
Speed acceleration probability 
distribution

EC Energy consumption
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non-stop service. The buses were built between 
2012 and 2014. They have CUMMINS ISM 425 diesel 
engines of 10.8 litters. Their passenger capacity is 
49 people and their gross vehicle weight is 13850 kg 
[18]. The buses location (Altitude, Latitude, and Long- 
itude) and speed were established using a global posi-
tion system (GPS) [19]. Additionally, the operating 
variables of the vehicle's engine were extracted through 
the onboard diagnostic system (OBD II) vehicle port. 
Table 1 shows the technical characteristics of the 
instruments used in this work. 

The variables listed in Table 1 were recorded during 
eight months of regular operation of the instrumented 
buses. The buses were operated by regular drivers in order 
to minimize any impact on the bus operation and passen-
ger transport service. The trips sampled were performed 
in both directions of the route. Huertas et al. [8] con-
cluded that a sample of 10 to 20 trips is sufficient to 
describe the driving patterns in flat regions. In this study 
we obtained 46 trips per region. Figure 2.a illustrates the 
speed vs. time plot obtained from an arbitrary chosen trip.  

QA/QC analysis was conducted to eliminate atypical 
data and trip series with more than 5% of missing data.  
At the end of the measurement campaign, a database 
was constructed with 138 trips (54867 vehicle operation 
records)[19].

2.2 Implementation of the DCs construction 
methods 

Stochastics methods: Micro-trips and Markov-chains
Micro-trips and Markov-chains methods are two of 

the most accepted approaches to construct DCs [16]. As 
stated before, in these two methods a synthetic DC is 

general characteristics, ii) the three DCs construction 
methods, and iii) the methodology followed to compare 
the representativeness of DCs produced by each method.  
Section 3 shows the results of comparing DCs in terms 
of their representativeness of the local driving pattern. 
Finally, conclusions are summarized in section 4. 

2. Materials and methods

We highlight that this research focuses on the compari-
son of the DCs obtained from three methods frequently 
used for constructing DCs, rather than obtaining a repre-
sentative DC for a specific region. To do this, we used a 
common database of trips obtained monitoring the 
operation of a single vehicle fleet operating in a region 
with general characteristics and therefore it describes the 
driving pattern in that region. Then, we implemented the 
three methods and finally, we evaluated the ability of  
the obtained DCs of representing the driving pattern 
contained in the database. Next, we will describe how 
the database was built, the implementation of the meth-
ods for constructing DCs and the methodology used to 
assess the representatives of the DCs obtained. 

2.1 Trips database
Reference [17] describes the work that led to the 
construction of the trip database. That work aimed to 
describe the driving patterns in regions with diverse 
topographies. It consisted in monitoring a vehicle fleet 
during its normal operation for a long period of time 
(~8 months). Next, we will summarize that work.  

Authors in reference [17] looked for a region whose 
road network presents different types of topography, 
traffic, and level of service. These preferences were 
established in order to have vehicle operation data in 
regions of general characteristics. The MEX 15D road, 
that connects Toluca with México City, fulfills these 
requirements. The selected road has a length of 72.4 km. 
The first 17 km corresponds to urban driving conditions 
in Mexico City where traffic flow is low due to frequent 
traffic jams. The next 41 km correspond to an extra-
urban road located in a mountainous region with altitudes 
between 2200 and 3100 meters above the sea level 
(m.a.s.l.). The last 14 km correspond to the extra-urban 
and urban area of Toluca city which is characterized by 
medium vehicular traffic flow over a flat region.

Fifteen buses were used during the monitoring cam-
paign. They cover the Toluca-Mexico City route on a 

Table 1: Technical characteristics of the instruments used  
in this study

Variable Instrument Technical characteristics

Position:

•	 Latitude

•	 Longitude

•	 Altitude
Speed and time

GPS

Position: 3-5 m, 95% 
typical
Frequency: 1 Hz
Speed: 0.05 m/s Root mean  
  square (RMS) steady  
  state
Pulse per second (PPS)  
  time: 1 microsecond at  
  rising edge of PPS pulse

Engine operation 
variables

OBD II
Registered through engine  
  sensors signal extracted  
  by ECU through OBD2
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characteristic parameters of the driving pattern. i.e., 
when CPi* = CPi. Thus, the degree of representativeness 
of a candidate-DC is evaluated as the relative difference 
between paired CPs according to Eq. 1.

Most researchers use, during the construction pro-
cess, a threshold between 5% and 15% as the maximum 
acceptable difference among the paired CPs [24,25]
However, they use a reduced number of CPs (2 or 3). 
The CPs and the number of CPs used depend on the 
researcher´s criteria. The most commonly used CPs are 
average speed, average acceleration, average decelera-
tion and percentage of idle time. Initially, we used these 
four CPs for both methods. However, the method based 
on Markov-chains did not converge and therefore, for 
that case, the CPs had to be limited to average speed and 
percentage of idle time. Table 2 specifies the CPs used 
in each method. 

The process of obtaining a candidate-DC is repeated 
until the acceptable threshold is obtained. The first 
candidate-DC that fulfills this threshold becomes the 
representative DC.  As these two methods are stochastic, 
the output DC change every time the method is applied, 
making the method repeatable but not reproducible. In 
this work, we carried out two iterations per method. 

Deterministic method: Minimum Weighted Difference - 
Characteristics Parameters
The Minimum Weighted  Difference of Characteristic 
Parameters (MWD-CP) is a deterministic approach to 
construct DC [17]. In this method, an estimated value of 
energy consumption (EC) is obtained for each trip, and 
the trip with the closest EC to the average EC of all trips 
is selected as the representative DC. Therefore, it uses 
EC as the assessment parameter to evaluate the 
representativeness of the DC. Currently, the simultaneous 
measurements of speed, time and energy consumption in 
vehicle fleets under real-world driving conditions could 
result in an expensive process with high uncertainties. 
As an alternative, the MWD-CP estimates the EC as a 
linear function of the CPs that most influence energy 

*
i i

i
i

CP CP
RD

CP
−

= (1)

made by splicing a quasi-random selection of trip 
segments [20] or states [21,22]. Figure 1 illustrates these 
methods. 

In the Micro-trips method, the speed-time data, col-
lected during the vehicle monitoring campaign, is parti-
tioned in segments of trips bounded generally by vehicle 
speed equal to 0 km/h. These segments are named 
“micro-trips”. A clustering of Micro-trips according to 
their speed and acceleration is frequently used. Then, a 
set of Micro-trips are quasi-randomly selected based on 
their probability of occurrences [5,23]. The number of 
Micro-trips selected depends on the desired duration of 
the DC. Additional research work is required to deter-
mine the appropriate duration of the DC. Usually it is 
near to 20 – 30 min. Table 2 shows the time used in this 
work for each method. Finally, the selected set of Micro-
trips are spliced together producing a candidate  
driving cycle. 

In the case of the Markov-chains method, the speed-
acceleration data is encoded into operational states. 
Following up the work of Shi et. al [22], we used 
45 bins for speed and 9 for acceleration. Hence, the 
frequency of the occurrences of the operational states is 
registered in a states matrix. Then, from the same 
database, the probability for moving from state Xi to 
state Xi+1 is computed. Results are recorded in a 
probability transition matrix [2]. Hereafter, this matrix 
is used to make a quasi-random selection of states that 
form a states vector. Finally, a candidate-DC is 
calculated decoding this states vector in terms of speed 
and time [22,24]. 

In these two methods, the representativeness of the 
driving pattern contained in the candidate-DCs is 
evaluated. Toward that end, the driving patterns 
monitored in the region under consideration and 
contained in the trip database was described by a set 
CPs. As described before, a CP is any variable formed 
starting from the speed and time variables, such as mean 
speed, positive kinetic energy, etc. Table 3 shows the 
most recurrent CPs used in the literature. Then, the 
candidate-DC was also described by its characteristic 
parameters (CPs*). Finally, it was established that a DC 
represent a driving pattern when the characteristic 
parameters of the candidate-DC are similar to the 
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In the previous equation, w0 is a constant value, wi 

is a weighting factor associated to the characteristic 
parameter i, CPi,j is the characteristic parameter i for 
the trip j. CPi is the average value of the characteristic 
parameter i for all the trips sampled. εj corresponds to 
the difference between the real ECj and the estimated 
	 . The representative DC is the trip j with EC a that 
minimizes the absolute difference respect to EC. The 

� jEC

consumption [17] such as mean speed and mean positive 
acceleration. The EC for each trip can be calculated 
using Eq. (2) and Eq. (3). Then, the average EC of all the 
monitored trips is calculated by Eq. (4). 

�
j J jEC EC= +ε (3)

�
0J i ij

i
EC w w CP= +∑ (2)

0 ii
i

EC w w CP= +∑ (4)
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Figure 1: Illustration of the stochastics methods for constructing driving cycles: a) Micro-trips and b) Markov-chains method
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Table 2. Characteristic parameters used in each method to construct driving cycles. *The expression used to calculate  
the SFC is shown in Eq. (7)

Input parameter Micro-trips Markov-chains MWD-CP

Duration of cycle (minutes) 105 ± 2 105 ± 2
Depends on the selected 

driving cycle

Characteristic parameters selected to 
evaluate the driving cycle 

representativeness

Average speed 
Average acceleration 
Average deceleration 

Percentage of time in idling

Average speed 
Percentage of time in idling

SFC*

Relative difference among paired CPs 5% 5% Not required

Other considerations Clustering micro- trips
Speed discretization in 45 

bins and 9 bins for 
acceleration

–
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Figure 2: a) Speed vs. time obtained in an arbitrary chosen trip. Driving cycles obtained by the b) MWD-CP, c) Markov-chains  

and d) Micro-trips methods
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representativeness of the DC but using all the CPs listed 
in Table 3. Additional work is required to define the set 
of CPs that fully describe a driving pattern and from 
there, the CPs that need to be included in this assessment 
of representativeness. For the time being, we used the 
CPs most frequently reported in the literature and listed 
in Table 3, without any particular prioritization. 

The Speed Acceleration Probability Distribution 
(SAPD) is another alternative to describe driving 
patterns. As described before, it classifies the instant 
speed and acceleration of the vehicles into bins of speed-
acceleration. Therefore, the similarity between the 
SAPD of the DCs and the SAPD of the driving pattern 
is an indicator of representativeness of the DC. The 
Quality of Fit (QoF), Eq. (8), has been used to evaluate 
the degree of similitude between SAPDs [26].

In Eq. 8, P*
ij is the probability that the vehicle travels 

within the bin i of speeds, and the bin j of accelerations, 
in the states matrix obtained for the DC, and Pij is the 
same variable obtained for the driving pattern. This 
metric is independent of the number of bins used in the 
discretization of the speed and acceleration ranges. It 

2
1 1( )n m *

ij i,ji jQoF P P= == −∑ ∑ (8)

representative DC using the methodology MWD-CP 
can be identified through Eq. (5) and Eq. (6). 

Previous work on the same region found that 
w0 =0.208 and that the CPs that most influence energy 
consumption in this region are the average road grade 
(θ), the number of accelerations per kilometer (Na), and 
the positive kinetic energy (PKE) [17]. Therefore, Eq. 2 
becomes Eq. 7 and this last equation estimates the EC of 
the transit buses monitored in this region. Eq. 7 also 
defines the weighting factors (wi) for Eq. 2. 

2.3	 Evaluating the driving cycle representativeness
Once the three methods described above were imple-
mented, we obtained their respective DC and evaluated 
how close the obtained DCs represent the monitored 
driving pattern. 

We extended the process used to evaluate the 
representativeness of the candidate-DC to evaluate the 

( )ij i ij j
i

EC EC w CP CP− = − +∑ ε (5)

{ }min ( )ij i ij
i

C Arg w CP CP= = −∑ (6)

0 208 4 149 0 0041 0 423a. . . N  .C KEE P= + + +θ (7)

Table 3: Characteristic parameters that describe the driving pattern in the Tol-Mex road. MT: Micro-trips. Mk: Markov-chains

Characteristic Parameters -CPs Units

CPs of 
driving 
patterns Mk 1 Mk 2 MT 1 MT 2 MWD-CP

Sp
ee

d Maximum speed km/h 28.1 28.2 28.2 30.8 27.8 28.4

Average speed km/h 12.0 12.5 11.8 12.4 12.0 11.2

Standard deviation of speed km/h 8.9 8.7 8.6 9.0 8.7 9.7

A
cc

el
er

at
io

n

Maximum acceleration m/s2 2.0 2.1 1.4 1.4 1.9 1.6

Maximum deceleration m/s2 –2.5 –2.8 –2.1 –3.5 –1.9 –2.1

Average acceleration m/s2 0.4 0.7 0.7 0.4 0.4 0.4

Average deceleration m/s2 –0.5 –0.8 –0.8 –0.5 -0.5 -0.5

Number of accelerations per km 1/km 7.3 8.8 9.2 6.5 7.2 7.4

Standard deviation of acceleration m/s2 0.2 0.1 0.2 0.2 0.2 0.2

Standard deviation of deceleration m/s2 0.4 0.3 0.3 0.3 0.4 0.4

O
pe

ra
ti

on
 

m
od

e

Percentage of time in idling % 9.9 9.7 9.8 9.5 9.9 19.3

Percentage of time accelerating % 29.5 18.9 18.7 31.3 28.2 27.2

Percentage of time decelerating % 25.6 16.8 16.9 27.3 23.9 23.7

Percentage of time in cruise % 34.9 54.6 54.6 31.9 38.0 29.7

D
yn

am
ic

s Root men square of  
acceleration - RMS

m2/s2 0.4 0.5 0.5 0.4 0.4 0.4

Positive Kinetic Energy - PKE m/s2 240.2 241.5 239.5 252.0 224.8 241.3
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ranges between 0 and 2 and values close to 0 indicate 
perfect math.

3. Results

As described before, the driving patterns monitored in 
the region under consideration and contained in the trip 
database was described by the CPi listed in Table 3. The 
values obtained for those CPi are also displayed in  
Table 3. 

Figures 2 c-d show the speed versus time profiles of 
the five DCs obtained using the Micro-trips, Markov-
chains and MWD-CP methods. Figure 2.d shows that 
the two DCs obtained with the Micro-trips method are 
different due to the quasi-random selection of the micro-
segments. Although the global average value for the 
assessment CPs remains constant, variations at the local 
time scale could produce variations in the energy 

consumption and tailpipe pollutant emission that not 
necessarily balance at the global scale.  For example, 
although the relative differences between the average 
speeds of the two driving cycles obtained is small 
(0.6 km/h), the speed and acceleration observed at any 
local intervals of time are drastically different causing 
variations in energy consumption and consequently on 
pollutant emissions. The previous observations are also 
valid for the two DCs obtained via the Markov-chains 
method (Figure 2.c). 

When the CPs that describe the DC are calculated and 
compared to the CPs that describe the driving pattern 
(Figure 3), we observed that the two DCs constructed 
using the Markov-chains method represent accurately 
the CPs associated to speed, percentage of idling and 
PKE (RDi <20%), but they do not for the CPs associated 
to acceleration, operational modes, and RMS. In the 
case of the Markov-chains method, we observed that the 
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Figure 3: Evaluation of the representativeness of the driving patterns contained in the driving cycles obtained using the Micro-trips,  

Markov-chains and MWD-CP methods, expressed as relative differences of the characteristic parameters associated to: a) speed,  

b) acceleration, c) operational modes and d) vehicle dynamics
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obtained DCs represent accurately the average speed, 
standard deviation of speed (Figure 3.a), average 
acceleration, operational modes (Figure 3.c), RMS and 
PKE (Figure 3.d), but they do not represent well the CPs 
associated to maximum acceleration and maximum 
deceleration (Figure 3.b). For the case of the MWD-CP 
method, the obtained DC represents accurately all the 
CPs that describe the driving pattern, except the CP 
associated to the percentage of idling time (Figure 3.c). 
This is due to the fact that the MWD-CP method does 
not include the percentage of idling time in the EC 
estimation function because this CP has a low contribution 
to energy consumption in the region considered in this 
study. In contrast, the Micro-trips and Markov-chains 
methods did consider idling time as an assess- 
ment parameter. Therefore, the DCs produced by the  

Micro-trips and the Markov-chains methods are forced 
to have relative differences in idling time below the 
defined threshold (5%). 

Previous observations hold for the two DCs obtained 
by each method and reported in this manuscript. Since 
the DCs change each time the stochastic methods are 
applied, previous observations need to be re-confirmed 
for the case of many other DCs (>1000) obtained using 
these DCs construction methods, starting from the same 
trips database. We foresee that results on relative 
differences will show a tendency towards stable values 
and therefore the comparison should be based on 
average relative differences and the dispersion of those 
relative differences. 

Figure 4.a shows the SAPDs of the driving pattern 
obtained for the Tol-Mex region. Figures 4.b-f shows the 
SAPDs of the five DCs obtained using the three DC 
construction methods. They show that all SAPDs look 
similar to the SAPD of the driving pattern.

Using the QoF metric (Eq. 8), we confirmed that all 
methods produced DC with a similar level of 
representativeness of the driving pattern (QoF < 0.008). 
The highest level of representativeness was obtained by 
the DC constructed by the Micro-trips method (QoF1= 
0.0039 and QoF2=0.0054), followed by the Markov-
chains method (QoF1= 0.0054 and QoF2=0.0072) and 
the MWD-CP method (QoF= 0.0082). 

As mentioned above, DCs are used mainly to evaluate 
the energy consumption and tailpipe emissions from the 
vehicles.  However, the assessment criteria currently 

used to construct DCs has no included those two metrics. 
Towards that end it is required the simultaneous 
measurements of speed, time, energy consumption and 
emissions from a large fleet of vehicles running under 
normal use, for extensive periods of time, which will be 
the focus of our future work. 

4. Conclusions

We implemented three frequently used methods to con-
struct driving cycles (Micro-trips, Markov-chains, and 
MWD-CP) and evaluated their capacity of producing 
driving cycles (DCs) that represent local driving pat-
terns. Toward that end, we used a common trip data-
base obtained from monitoring the operation of 
15 transit buses under normal conditions of use on the 
road that connects Toluca City with Mexico City. From 
that database, we obtained the driving pattern of this 
region and described it by means of 16 characteristic 
parameters (CPs). 

Then, we established that a DC represents a driving 
pattern when the CPs of the driving cycle are similar to 
the CPs of the driving pattern. Thus, we evaluated the 
degree of representativeness as the relative difference 
between paired CPs. We found that the MWD-CP 
method produced a DC that describes the driving pattern 
in that region with the highest level of representativeness. 
All of its CPs were similar to the CPs of the driving 
pattern (relative differences <20%), except for the case 
idling time. 

The MWD-CP method is a deterministic, repeatable 
and reproducible method designed to construct DCs that 
reproduce real energy consumption. These important 
advantages over the other methods of constructing 
driving cycles are opaque by its major drawback which 
is the need of weighting factors that depend on the 
region under consideration. 

Previous conclusions need to be re-confirmed with a 
database made of simultaneous measurements of speed, 
energy consumption and tailpipe emissions on a large 
vehicle fleet running under normal conditions of use 
during extended periods of time.  Additionally, it is worth- 
while to develop the present comparative analysis based 
on results of tendencies of the stochastics methods for 
constructing DCs (Micro-trips, Markov-chains) rather 
than on a single result, as it was done in the present study. 
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Figure 4: Assessment of the representativeness of the driving cycles obtained using the MWD-CP, Micro-trips and  

Markov-chains methods using as criteria the Speed Acceleration Probability Distribution (SAPD). a) SAPD for the driving pattern  

on the Tol-Mex road. SAPDs for the driving cycles obtained using the b) MWD-CP, c) Micro-trips first iteration,  

d) Micro-trips second iteration, e) Markov-chains first iteration, and f) Markov-chains second iteration
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