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RESEARCH and EXPERIMENTATION

ABSTRACT 

Because of the physical properties of heat energy, information about the spatial pattern of 
building heat demand is important for designing climate protection measures in the heating sector 
(efficiency improvements and renewable energy integration). Many cities in Germany currently 
prepare ‘heat demand cadastres’ – thematic maps, depicting building heat demand. The growing 
trend towards open data points into the direction of making these cadastres public, so that 
different actors can make use of them. However, making such data public may violate the legal 
requirement of protecting private data. We present a way of tackling this problem with an 
approach for the aggregation of spatially represented heat demand. Using an algorithm based on 
graph theory, we group buildings such that the tracing of energetic characteristics and behaviour 
to individuals is rendered unfeasible. Our method also allows additional constraints to be 
introduced, for example, aggregating with respect to plot boundaries. We discuss how the 
building groups can be visualised in a map by presenting a method of generating customised 
geometries for each group. Finally, we present a visualisation of both specific heat demand (in 
kWh/(m2*a)) and total heat demand (in kWh/a) in one and the same map. This aids the analysis 
of more complex questions involving energy efficiency and heat supply. 

local and their utilisation also requires understanding the 
spatial patterns of demand and supply.

At the same time  the need for more cooperation and 
coordination between public and private actors in urban 
planning as defined for example in the Copenhagen 
Charter [2] has caused spatial data to be made increasingly 
public. There are currently many examples of municipal 
and regional authorities that operate geoportals allowing 
open access to numerous spatial datasets - natural envi-
ronment, built environment, technical and transport 
infrastructure and many more. This trend has also 
reached the energy sector with the introduction of pub-
licly accessible energy-relevant datasets on both the 
supply and the demand side – e.g., solar or geothermal 
energy potentials but also building energy demand maps. 
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1. Introduction

The building sector is a large contributor to CO2 emis-
sions (in the higher latitudes mainly through space heat-
ing). Reducing these emissions through energetic 
refurbishing of buildings and integration of renewable 
energy sources has become a major focus of climate 
protection policy. So-called “Urban Building Energy 
Models” (UBEMs) [1] are being developed to support 
these measures. With the use of GIS, these models 
become spatial models, allowing the visualisation of the 
spatial pattern of heat demand in thematic maps, or 
“heat demand cadastres”. Space is of the essence in heat 
planning as heat transport (distribution grids) is tradi-
tionally associated with losses and costs. Renewable 
energy sources, on the other hand, are in many cases 
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mapping is to support planning. For strategic energy 
planning at the city level, the size of the aggregation 
units may be less important. However, for the concrete 
planning of individual projects, a finely grained heat 
demand map is very useful, even necessary, as the loca-
tion of energy sources in relation to energy sinks is a 
major criterion for project viability. Additionally, data at 
a coarser spatial level run into averaging-out effects that 
mask spatial variability. To avoid this, we set a require-
ment to aggregate only until the minimum data protec-
tion requirement was achieved. 

In addition, heat demand maps greatly facilitate the 
analysis of potential for district heating, which is consid-
ered a key technology for a sustainable heat supply in 
urban contexts with a high share of a relatively ineffi-
cient building stock. Since district heating infrastructure 
tends to follow the street network of a city, the method 
presented here respects the street layout of a city. It goes 
without saying that the aggregation should partition the 
urban space, i.e. form groups that do not spatially over-
lap, as this would counteract the consideration of the 
intrinsically local nature of heat energy.

Finally, aggregation in thematic maps can be split into 
two distinct tasks – defining the aggregated groups and 
defining the geometry to represent them, the latter being 
a non-trivial issue. The requirements for the algorithm 
were then: (i) grouping buildings to satisfy a minimum 
unit count, (ii) optimising unit count to make it as close 
to the required minimum as possible, (iii) producing 
spatially non-overlapping groups that respect the street 
layout, and (iv) generating a geometry for each individ-
ual group.

2. State of the art

The easiest way of approaching the aggregation task is 
to use existing spatial units like census tracts, postal 
code areas or similar. However, all of these units are 
predefined which lowers the flexibility of the aggrega-
tion and does not satisfy (ii). The “urban block” unit (the 
areas in-between the street network) comes close to 
satisfying all requirements for aggregation. Urban blocks 

However, energy consumption and demand reflect 
personal behaviour as well as the condition of property 
such as buildings (which to a large extent are privately 
owned). Therefore, a potential conflict arises between 
the need for open data and the need for personal data 
protection. Different countries and authorities go about 
this issue in different ways. We concentrate on the case 
of Germany, where data protection requirements in this 
context are relatively strict. 

The context in which this paper originated was our 
work on the GEWISS Project Hamburg [3] and our 
cooperation with the Hamburg Ministry of Environment 
and Energy (Behörde für Umwelt und Energie - BUE) in 
developing the Hamburg “Heat Demand Cadastre” 
(Wärmekataster), which was published in 2017. The 
cadastre is a thematic map depicting demand for space 
heating and hot water. It is based on consumption-
corrected heat demand values from the IWU Typology 
[4] and the German VDI standard [5]. See [6] for meth-
odological details 

Since many buildings are privately owned, however, 
the cadastre had to adhere to data protection require-
ments. Even though the heat demand at the building 
level was only estimated based on the type and age of 
the building (no measured consumption), it could not be 
released as it was, but had to undergo aggregation.  
The aggregation requirement defined by the BUE states 
that aggregated building groups had to include a mini-
mum of five units. A unit in a residential building is the 
dwelling unit, while each non-residential itself com-
prises a single unit. 

This definition raises some questions, in particular 
who is to be protected: Individuals in their function of 
building users or real estate property owners? While this 
is still to be explored, we developed a method for per-
forming the required aggregation, which provides the 
flexibility to be adjusted for alternative formulations of 
the aggregation criterion that might be developed in the 
future (e.g., a change in the minimum required count for 
each group).

We also added some further requirements to increase 
the usability of the cadastre. The purpose of heat demand 
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two, as a pre-step to cartographic generalisation. Data 
protection could fall into the second category, but we 
could not locate examples for this in the context of urban 
energy mapping.

There is however a body of literature on spatial group-
ing and generalisation of objects. Yan et al [16] propose 
using Delaunay Triangulation to describe adjacency rela-
tions, filter the connecting triangles and then calculate 
building parameters (size, orientation, shape) to arrive at 
building groups. Wang and Eick [17] use a contour-line 
based density algorithm to derive polygons from point 
objects and then a Poly-SNN algorithm to cluster the 
polygons into new polygons. Beilschmidt el al [18] use a 
quadtree for the description and fast query of adjacent 
points. In a similar context to Beilschmidt but using 
Delaunay triangulation is the work by Jänicke el a. [19].

Most of these works were designed in the different, 
broader, context of point aggregation. The closest to our 
work is the work by Yan et al, but the specifics of our 
context – finding a balance between map usability for 
energy planning and data protection – led to differences 
in the method.

4. Methodology

4.1. Number of units per building
Adhering to the “five plus” rule is not a straightfor-
ward task, since the digital cadastre of Hamburg 
(ALKIS) does not contain number of dwelling units 
per building. Therefore, we need to estimate this 
value. We intentionally underestimate the unit counts, 
to err on the side of caution, avoiding the cases where 
our estimation is too high and a building group is pre-
sented as having more than five units, when in reality 
it has less. We use the number of stories of the build-
ing as a proxy for the number of dwellings - assuming 
that there is at least one dwelling per floor. These 
assumptions are summarised in Table 1. It is obvious 
that this leads to an underestimation for most of the 
buildings, but it is a precaution that serves to make 
our algorithm safer.

per definition follow the street layout (iii) and have a 
known geometry already made available by the public 
authorities of Hamburg (iv). A further argument for their 
use is that some official data, mainly about demography, 
is available at this level. Having energetic data at an 
aggregation level which corresponds to an official unit 
of governmental statistics allows for multi-sectoral anal-
ysis (for example analysing connections between heat 
demand and socio-demographic data). Although the 
urban block only partially satisfies requirements (i)  
and (ii), we use it as a starting point of our aggregation.

An alternative to existing spatial units is the use of a 
raster grid. The first problem with this approach is that 
the resulting groups depend on the raster grid position. 
Shifting the grid around in the Cartesian plane would 
change the content of each cell. In other words, the allo-
cation of a building to a cell is arbitrary and depends 
upon the initial position of the raster. A further problem 
is that it does not satisfy the requirements for having as 
few units as possible (ii) and following the street layout 
condition (iii).

Note that we do not consider our task to be a “cluster-
ing” task in the normal sense. Cluster algorithms, 
although a broad group of algorithms, are generally 
designed to optimize for within-group homogeneity and 
between-group heterogeneity and have an exploratory 
character. Our task was not exploratory. We had to first 
group in such a way that each group has a minimum 
size, while having homogeneous groups (“clustering”) 
was a secondary objective. The difference is subtle. An 
example is the standard “k-means” method. It requires a 
desired number of clusters as input, while we needed a 
desired minimum count within the clusters.

3. Literature review

In the area of energy planning, the focus is increasingly 
on the spatial dimension of consumption and generation 
and numerous tools are being developed for simulation 
and optimization at local levels [7–11]. Simultaneously, 
as decentralized generation leads to the emergence of 
“prosumers”, ICT allows for new forms of public partic-
ipation [12–14].

In cartography, the problem of building aggregation is 
part of the broader map generalisation problems. Weibel 
and Jones [15] summarise that there are two forms of 
generalisation – one is cartographic, where the goal is 
high quality map symbology at different scales and data-
base generalisation, with the goal of deriving reduced 
databases for storage or computational efficiency, and 

Table 1: Rules for estimating the number of units per building

Building use Floors Estimated units

Residential and mixed-use with 
residential

1 to 3 1

3 to 5 3

>5 number of floors

Non-residential any 1

Any building use without heat 
demand

any
not considered for 

aggregation
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buildings. We present the method by means of an 
example urban block (Figure 1). In a first step, we 
compute all the distances between all pairs of buildings 
in the urban block. Let this be represented by a com-
plete graph G, where each node is a building and each 
edge is the straight line between all pairs of two build-
ings. From graph G, using the Scipy Python library 
implementation [20] of Kruskal’s algorithm [21], we 
compute a minimum spanning tree (MST). A MST is 
such a subtree of G, that spans all the nodes of G and 
has a total edge length that is minimal compared to all 
other subtrees of G that span all the nodes of G. The 
MST is represented with red lines (edges) in Figure 1 
(left). Describing the buildings with their MST is 
advantageous because now we can group by removing 
edges from the MST (Figure 1 centre). We remove the 
edges based on their length, starting from the longest. 
If removing an edge leads to a connected component 
(group) that is below the minimum dwelling count, we 
restore the edge and proceed to the next edge. After we 
have iterated over all the edges we give a unique iden-
tification number (ID) to each connected component. 
Since there are five groups in the example (the small 
building in the West is an exception, see below) the IDs 
are from zero to four (due to Python’s zero indexing, 
see Figure 2).

We then append the ID to the urban block identifier of 
each building within the same component. Which group 
receives which ID is irrelevant as long as the IDs are 
unique and the groups are defined.

In this way, we define the building groups. Although 
this is the basic logic of the grouping, we introduce two 
additional rules. Firstly, for the purpose of neighbour-
hood energy planning, well-defined building complexes 

4.2. Defining the building groups
Since the urban block satisfies many of the defined 
requirements, we start at this spatial unit. Although most 
urban blocks contain more than five units, there are a 
few exceptions. We deal with these by manually merg-
ing these few urban blocks with neighbouring ones. 
Urban blocks with less than five units and very small 
heat demand are filtered out. We could tackle this in an 
automated way, but since these exceptions are few and 
far between, we leave this as a manual step prior to run-
ning the algorithm.

The idea is to partition the urban block into building 
groups with a unit count as close as possible to the min-
imum required. Firstly, all buildings receive an ID corre-
sponding to the ID of the urban block (for example 
“710005”). Then we group within the urban block by 
appending an additional integer to the urban block ID – 
“710005_1”, “710005_2” etc. The problem then lies in 
generating the additional IDs in a meaningful way that 
respects the requirements. There are two obvious possi-
bilities – to group spatially or based on building func-
tion. For energy planning, a grouping based on function 
makes sense, since buildings with different functions 
have different typical demands and load curves etc. and 
summary statistics for a group of homogenous buildings 
are more meaningful. However, this will impede the use 
of the map, since it is visually difficult to represent spa-
tially intertwining groups of buildings (this is why we 
have requirement of spatial non-overlap (iii)). For this 
reason, we group spatially. However, we respect plot 
boundaries, which tend to encompass buildings of simi-
lar use in many cases (see below). 

In order to produce spatially clustered groups, we 
need to describe the spatial relationships between 

Figure 1: Splitting the minimum spanning tree of the urban block into spatially well-distinguishable groups. Red lines depict the edges of 

the MST, blue lines the edges that were removed during the aggregation process
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“anonymised”. The behaviour of the algorithm is depen-
dent upon a parameter, which controls how small and 
how far away does a building have to be to be excluded. 
Consult the Github repository for more details [22] .

4.3. Creating Geometry Representation
After all buildings in the urban block receive a group ID 
(or are anonymised) the question remains how to present 
their heat demand. For specific heat demand (i.e. per m²) 
at the group level we use the area-weighted average of 
the specific heat demand [kWh/(m²*a)]. One way of 
spatially representing this value is to use the existing 
building geometries and symbolise each with the colour 
that reflects the specific heat demand of the building 
group (Figure 2). The problem is that from the viewpoint 
of the map user it is difficult to understand that the 
colours refer to values for the groups and not for the 
individual buildings. This can be written in the legend, 
however it is not directly visible. Moreover, when 
groups have similar values one cannot distinguish which 
buildings are in which group (for example between 
710005_4 and 710005_2). Labelling each group (Figure 
3. left) does not help to overcome this. Labelling each 
building (Figure 3. right) does, but it overloads the map 
with annotations. An alternative to the building geome-
try is to use the plot geometry, but plots come in various 
shapes and sizes and using them as basis fails in areas 
where there is a single building in a large plot. Therefore, 
we generate a custom-made group geometry. 

We use an approximation of a concave hull using a 
combination of two polygon buffers. This approach is 

of similar use (e.g. large prefabricated apartment blocks, 
hospital complexes or school campuses) are of great 
importance, since they are large consumers and can play 
a role as “anchors” for district heating. Therefore, it 
would be advantageous to attempt to group the individ-
ual buildings in these complexes into the same building 
groups. Attempting to cluster only spatially will not take 
this into account in many cases. We use the plot bound-
aries as a proxy for finding such complexes. For this, we 
apply an initial re-weighting to the complete graph G. 
We multiply the distance between two buildings in the 
same plot with a factor of 0.05. In this way, the MST 
algorithm considers such edges as being shorter than 
they truly are and are more often part of the MST. When 
we then sort the edges based on length, these edges are 
further down in the list and are less often split. Since 
building functions generally follow plot boundaries 
(school or hospital buildings, but also industrial build-
ings of similar use are usually within the same plot), the 
algorithm will tend to put them in the same group, 
although the purely spatial logic might dictate some-
thing else.

The second adjustment to the splitting logic is the 
introduction of a maximum distance between the build-
ings in a group. There are situations in urban space, 
where a single building is in a highly isolated location 
even within an urban block - a small hut within a park 
complex, or a small workshop in agricultural land on the 
outskirts of a city. Since such buildings often are irrele-
vant to the purpose of the mapping (heat demand), the 
algorithm may split them from a group and note them as 

Figure 2: Building groups represented with building geometries
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energy efficiency) and total heat demand in kWh/a (or 
MWh/a). While heat loads, heating system types, heat-
ing system temperatures or building refurbishment state 
can also be of interest, we concentrate on the specific 
and total heat demands, as the most widely depicted in 
heat demand maps.

If we use the typical coloured filling for symbolising 
the groups (Figure 4 left), we run into the same issue as 
the plot representation – if buildings are far away from 
each other, the polygon will be big and noticeable, but 
its size is actually irrelevant. The purpose of the polygon 
representation of the building group is to represent the 
buildings’ characteristics and designate which buildings 
are in which group. The size of the polygon however is 
not in any way a function of any heat demand related 
characteristics. Buildings with very large footprint areas 
will have a large polygon representation, but so will 
small buildings with large distances in-between. In order 

referred to as “Aggregate Polygons” available as SQL 
code at Github [23]. Although we do not use the code 
itself, we adopt its approach. In essence the method buf-
fers each building geometry outwards at a given distance 
and dissolves the overlapping polygons to produce a 
single buffer (Figure 3). Then a second buffer is gener-
ated, but with negative distance, which means it buffers 
inwards from the previous buffer. In the process the 
areas in-between buildings become parts of the buffer 
area. The orthogonality of the geometry representation 
stems from the buffer options. We use a “metre limit” of 
2.5 meters, as in [23]. The options for the buffer genera-
tion are part of the buffer class of the GEOS library [24].

4.3. Visualisation
There are generally two numeric heat demand character-
istics that are used in our context – specific heat demand 
in kWh/(m²*a) (which can be interpreted as a measure of 

Figure 3: Geometry representation with two buffers. See [23]

Figure 4: Visualising aggregated final energy

Heat Demand (Final Energy)
kWh/(m2*a)

<50
50 – 100
100 – 150
150 – 200
>200

Heat Demand (Final Energy)
kWh/(m2*a) Gwh/a

<50
50 – 100
100 – 150
150 – 200
>200

<0.5
0.5 – 5



International Journal of Sustainable Energy Planning and Management Vol. 24 2019 	 121

Ivan Dochev, Hannes Seller and Irene Peters

distinguishable. An important point is to adjust for 
colour blindness, but this would require changing the 
basic green-yellow-red palette. This adjustment is 
beyond the scope of this paper.

4.5. Software used
The presented algorithm was written in Python using the 
Numpy [26], SciPy [20] and Shapely [27] libraries and 
the PyQGIS library of the open-source GIS software 
QGIS [28]. We used QGIS also for the visualisations. 
The code is available on Github[22].

5. Results

We applied the described methods to a dataset of 
300 000 buildings (residential and non-residential) in the 
city of Hamburg. The algorithm produced 40 000 build-
ing groups. The size of the groups was between five and 
nine units. We use the geometry representation and the 
visualisation approach to produce Figure 5. We use a 
digital orthophoto [29] as background map.

to avoid giving visual significance to the size of the 
polygon, we use only its outline (Figure 4 right). 

We colour the outline based on specific heat demand 
and additionally adjust its thickness as function of the 
total heat demand. This has the advantage that it allows 
a more integrated analysis of heat demand. For example, 
it allows the quick visual localisation of large ‘heat 
sinks’ with low or high energy efficiency. This is advan-
tageous for planning since it points towards appropriate 
measures. For example, a large heat sink with low spe-
cific heat demand is likely a target for renewable heat 
supply, while a large heat sink with high specific heat 
demand is likely first a target for an increase of effi-
ciency through energetic refurbishment.

For the colour scheme, we use an already relatively 
known colour scheme in Germany – the green- 
yellow-red colour gradient of the energy certificates 
according to the Energy Efficiency Ordinance in 
Germany (EnEV)  [25]. We adjust the tone, depending 
upon the background map and reclassify the scale into 
50 kWh/(m²*a) bins, to make the classes more 

Figure 5: Proposed visualisation of the aggregated heat demand (building groups). Background map: [29]
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[5]	 The Association of German Engineers, Characteristic 
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electrical-energy and water consumption values, Beuth Verlag, 

Berlin 91.140.10, 91.140.50, 91.140.60, 2018. http://www.vdi.

eu/nc/guidelines/vdi_3807_blatt_2-verbrauchskennwerte_fuer_

gebaeude_verbrauchskennwerte_fuer_heizenergie_strom_und_

wasser (accessed 16 May 2018).
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Planning and Management 16 (2018) 3–30. https://doi.
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model for the planning of district energy systems, International 

Journal of Sustainable Energy Planning and Management 21 
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[9]	 B. Möller, S. Nielsen, High resolution heat atlases for demand 

and supply mapping, International Journal of Sustainable 

Energy Planning and Management 1 (2014) 41–58. https://doi.

org/10.5278/ijsepm.2014.1.4

[10]	 V. Heinisch, L. Göransson, M. Odenberger, F. Johannson, A 

city optimisation model for investigating energy system 

flexibility, International Journal of Sustainable Energy Planning 
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Supporting tool for multi-scale energetic plan through 

procedures of data enrichment, International Journal of 

Sustainable Energy Planning and Management 24 (2019). 
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Sharing Cities: from vision to reality. A people, place and 

platform approach to implement Milan’s Smart City strategy, 
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6. Conclusion and Outlook

With the increase in available geodata, protecting pri-
vacy in public maps and datasets is gaining importance. 
Despite rising concerns about the potential violations of 
data protection requirements,  energy policy should be 
based on quantitative analysis. The difficult, but import-
ant task is to find the balance between protecting privacy 
and retaining usability. This paper is an effort in this 
direction. There is, of course, room for improvement. 
The defined rules for the number of units per building 
are simplified and generalised. They can be adjusted if 
different strategies for different building types are for-
mulated. For example, data on publicly owned buildings 
may be considered as not requiring the same extent of 
data protection as privately owned buildings. The munic-
ipality or another public and semi-public entity being the 
building owner, can agree to make this data public. This 
can easily be implemented into the algorithm if the func-
tion for assigning the number of units is changed so that 
it assigns a value of five units to publicly owned build-
ings. Then each public building will have enough units 
to constitute a building group and the algorithm will 
attempt to define such a building as a group by itself.

On the visualisation side, large amount of spatial data 
nowadays include the third dimension. Representing the 
heat demand of building groups in a 3D visualisation is 
a further area to be explored.
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