1. Introduction

In [1], Al Hasibi & Bawan investigate the implementation of renewable energy sources in Indonesia after the COVID19 pandemic. Analysing different scenarios – Supply Security scenario, Current Target scenario, and the Lower Target scenario. Findings show an opposing trend between greenhouse gas emissions and capacity costs. Al Hasibi has previously analysed Bali for this journal [2], arriving at similar results regarding emissions and costs, based on fuzzy decision-making processes. Sani [3] looked at the Indonesian system from a systems dynamics’ perspective, after noting the historical issues of inertia in fossil energy supply. Using a different approach based more exclusively on sustainability, Siregar evaluated different potential resources for Indonesia arriving at solar energy as a primary focus area. Gunawan, on the other hand explored solar, finding that the institutional setup of energy in Indonesia was too rigid for fast developments in photovoltaics [4].

In [5], Yuni and co-authors look into the energy consumption of 43 Sub-Saharan African countries, finding that there has been an increase in the use of electricity generated from renewable energy sources and that this has affected economic development positively. Developments however are not sufficiently substantial to form an important element in greenhouse gas emission abatement. Abdallah and coauthors [6] previously addressed how Kenya and neighbouring countries could handle the energy transition from a more social perspective and addressing appropriate reforms. Momodu [7] probed further into the connection between economic development and renewable energy exploitation/climate change mitigation taking West Africa as a case, recommending measures for improving energy efficiency, lowering energy intensity, as well as investment incentives and subsidies.

In [8], Kumar and coauthors underscore the need for a fair and adaptable approach to clean energy subsidies in India, focusing on residential rooftop solar. It addresses existing disparities in grid parity, payback period, and willingness to pay among consumers, and suggests an adaptive decentralised subsidy policy based on pay-back period PBP equalisatio. Kumar and team have previously investigated investments in rooftop solar panels in this journal [9].

Lastly, this issue includes a corrigendum to Traber’s article from this journal’s volume 31 [10].
References


