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ABSTRACT. 

Different temporal and spatial dimensions of carbon accounting (CA) can yield varying carbon 
emission results. Fine-grained time- and region-specific carbon emission factor (CEF) accounting 
for a target power grid can improve both accuracy and interpretability. This paper uses a central 
China power grid as a case study to examine the calculation methods for CEFs across different 
temporal and spatial dimensions. It focuses on the differences in CA at substation, administrative, 
and voltage levels (VLs) across various time periods. First, the paper summarizes the development 
trends in power grid CEF calculations, highlighting the importance of regional division and time-
based accounting. Second, a multidimensional CEF calculation method is proposed based on the 
coupling mechanism between power generation and carbon emissions, emphasizing the close 
relationship between carbon emissions and electricity under different generation structures and 
energy usage patterns. Finally, through quantitative analysis, the paper examines carbon emission 
variations across different temporal and spatial ranges and discusses the advantages and 
disadvantages of various partitioning strategies from the perspectives of power generation 
companies, electricity consumers, and the government. The study provides valuable insights for 
further research and standardization of CEFs in power grids.

1.	 Introduction

As global climate change intensifies, an increasing 
number of countries and organizations recognize the 
necessity of reducing, compensating for, or completely 
offsetting greenhouse gas emissions (particularly carbon 
dioxide) to achieve the goal of “carbon neutrality.” The 
attainment of carbon neutrality primarily hinges on 
reducing carbon emissions, with accurate carbon 
accounting (CA) serving as an essential foundation [1]. 
The precision of this accounting directly impacts the 
rationality of carbon reduction policies, the effectiveness 
of management and operational mechanisms, and ulti-
mately determines whether the carbon neutrality goal 
can be genuinely realized [2]. 
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To systematically and accurately account for green-
house gas emissions, the World Resources Institute 
(WRI) publishes the “Greenhouse Gas Protocol: 
Corporate Accounting and Reporting Standard,” which 
classifies greenhouse gas emissions from corporate 
activities into three distinct scopes [3]. Scope 2 
Accounting refers to the accounting of indirect carbon 
emissions from purchased electricity, heat, steam, or 
cooling. The Scope 2 accounting methodology outlined 
in the Corporate Standard is widely recognized and 
adopted as an industry standard. Compared to other 
accounting methods, Scope 2 Accounting comprehen-
sively considers indirect greenhouse gas emissions, 
including those from electricity consumption, the 
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methods. However, with the gradual proliferation of 
renewable energy sources, particularly as solar and wind 
power generation costs decrease, more countries and 
organizations have begun incorporating these clean 
energy sources into their power systems. Consequently, 
increasing research has introduced the concept of “aux-
iliary and supplemental power sources” [11] and started 
to account for the emission factors of different types of 
renewable energy under varying conditions, driving the 
evolution of grid CEFs. To address emerging challenges, 
researchers have begun integrating novel approaches 
such as those based on nighttime light data for analyzing 
dynamic spatiotemporal evolution and spatial effects of 
urban carbon emissions [12] and assessing wind power 
spatiotemporal footprints toward carbon neutrality [13]. 
Additionally, city-scale energy consumption and decou-
pling effects have been explored in multiscale investiga-
tions of carbon emission dynamics [14].

The diversity in methodologies highlights the gaps in 
precision, spatial granularity, and real-time adaptability of 
current approaches, necessitating a robust spatiotemporal 
carbon emission accounting framework. While much of 
the prior work has emphasized either broad regional pat-
terns or specific operational dynamics, there remains a 
significant need for integrated methodologies that bridge 
spatial and temporal dimensions at different scales, as 
well as for standards that address intersectoral differences 
[6-8].

This study aims to develop a robust spatiotemporal 
CEF calculation framework tailored to regional power 
grids and seeks to provide actionable insights for policy-
makers, power companies, and researchers working 
toward achieving carbon neutrality in power systems. To 
achieve this aim, the study is guided by the following 
research questions:

1	 How do different partitioning strategies impact 
the accuracy and applicability of CEF calculations 
across spatiotemporal dimensions in a regional 
power grid?

2	 How can spatiotemporal coupling mechanisms 
between power generation units and carbon 
emissions improve the precision and adaptability 
of CEF accounting?

embedded emissions in purchased goods and services, 
and transportation emissions associated with business 
activities [4]. 

The power system is one of the major global sources 
of greenhouse gas emissions. Accurately calculating the 
CEF of power grids is crucial for formulating effective 
carbon reduction policies. However, there is currently no 
unified standard for calculating CEFs in power grids, 
either domestically or internationally [5]. The differences 
in focus between environmental regulatory authorities 
and the power sector  contribute to discrepancies in 
carbon emission accounting. The environmental regula-
tory authorities are responsible for monitoring and man-
aging environmental quality, including air pollution and 
climate change, and are more concerned with carbon 
emissions across and within industries. This sector seeks 
to control carbon emissions through the development and 
enforcement of regulations, standards, and emission per-
mits, with stakeholders such as the public, environmental 
organizations, and the international community, who are 
primarily focused on environmental protection. In con-
trast, the power sector’s primary goal is to ensure a stable 
electricity supply while optimizing the efficiency of 
energy production and utilization. The power sector 
tends to adopt measures like technological innovation 
and energy transition to reduce carbon emissions, such as 
increasing the share of renewable energy [6],  enhancing 
generation efficiency [7], and promoting clean energy 
technologies [8]. The stakeholders in the power sector, 
including energy companies, electricity consumers, and 
governments, are more concerned with the reliability of 
energy supply and cost-effectiveness [2].

To measure carbon emissions from different electric-
ity sources and more accurately assess the contribution 
of the power system to greenhouse gas emissions, many 
countries, organizations, and institutions have proposed 
methods for calculating grid CEFs based on the Scope 2 
Accounting approach. The grid CEF refers to the amount 
of carbon dioxide emitted per unit of electricity gener-
ated by the grid, typically expressed in gCO2/kWh [9]. 
Initially, grid CEFs were primarily used for nation-
al-level energy emission estimations, considering only 
the emissions from traditional power generation 
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3	 What are the advantages and limitations of these 
strategies from the perspectives of power 
companies, electricity consumers, and government 
authorities?

4	 What standards and frameworks can be proposed 
for integrating spatiotemporal CEF calculations 
into carbon reduction strategies and policy 
development?

By addressing these questions, this paper takes a 
regional power grid in central China as a case study to 
explore the differences in electricity CEF calculations 
based on various partitioning accounting strategies 
within different time periods to bridge the method-
ological gaps in carbon accounting. It further dis-
cusses the advantages and disadvantages of these 
strategies from the perspectives of power companies, 
electricity consumers, and government authorities, 
providing a reference for further research and the 
development of standards for CEFs in China’s power 
grids. The main contributions of this paper are sum-
marized as follows:

1	 Review and Gap Analysis: It reviews the current 
trends of electricity CEFs calculations identifying 
gaps in precision, spatial granularity, and real-
time adaptability. It highlights the importance of 
incorporating spatiotemporal dynamics into CEF 
frameworks, addressing Research Question 1.

2	 Proposed Methodology: Based on the coupling 
mechanisms between the electricity generation of 
different types of power generation units and their 
carbon emissions, this paper proposes a calculation 
method for spatiotemporal CEFs. This method 
analyzes the coupled relationship between 
temporal carbon emissions and electricity power 
across multiple spatial dimensions, considering 
different power structures and energy consumption 
characteristics, to achieve CEF calculations across 
various accounting scopes. This contribution 
directly addresses Research Question 2, improving 
precision and adaptability in CEF accounting.

3	 Quantitative Analysis and Strategy Evaluation: 
Through quantitative analysis of the differences 
in CEFs across different accounting scopes 
within the target regional grid (TRG), the paper 
explores the pros and cons of different 
partitioning strategies from the perspectives of 
power companies, electricity consumers, and 
government authorities. This addresses Research 

Question 3, providing insights into the practical 
applicability of CEF frameworks for stakeholders.

4	 Framework Proposal: Based on the findings, the 
study provides a preliminary framework for 
integrating spatiotemporal CEF calculations into 
broader carbon reduction strategies and policy 
development, addressing Research Question 4.

Section II introduces the current trends in accounting for 
electricity CEFs. Section III proposes the theoretical 
method for calculating spatiotemporal CEFs. Section IV 
describes the calculation results of CEFs in the provin-
cial TRG. Section V provides comparative analysis and 
carbon reduction strategies and Section VI concludes.

2.	Evolution and Trends of Power Grid Carbon 
Emission Factors

The evolution of CEFs in power grids reflects the grow-
ing need for precision and adaptability in CA methodol-
ogies. This chapter provides an overview of the current 
research status, trends, and significance of power grid 
CEFs, highlighting global advancements, innovative 
methodologies, and their implications across various 
accounting scopes and timeframes.

2.1	 Research Status and Trends
Globally, a series of standards have been established to 
guide and regulate corporate carbon audits. At the 
national and regional levels, the Intergovernmental 
Panel on Climate Change (IPCC) developed the IPCC 
Guidelines for National Greenhouse Gas Inventories in 
2006 [15]. For corporate and product-level accounting, 
the WRI and the World Business Council for Sustainable 
Development released frameworks for greenhouse gas 
accounting in 2001, 2011, and 2015 [16]. In the U.S., the 
Infrastructure Investment and Jobs Act of 2021-2022 
mandated the Energy Information Administration (EIA) 
to publish hourly average and marginal CEFs, incorpo-
rating CA into green microeconomic infrastructure [18]. 
This initiative promotes the development of carbon sink 
markets and enhanced the system of emission reduction 
responsibilities. In response, EIA has developed a 
national grid monitoring platform that provides hourly 
power generation and consumption data at national, 
state, and balancing area levels [19]. The California Air 
Resources Board has released hourly carbon emission 
data related to electric vehicles under the Low Carbon 
Fuel Standard [20]. Finland’s Fingrid system uses real-
time generation data and carbon emission coefficients to 
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estimate grid carbon emissions [21], while France’s 
eCO2mix system dynamically monitors electricity-re-
lated carbon emissions, linking them to power genera-
tion, load, and energy exchange with neighboring 
countries [22]. The PJM and UK grid publishes real-
time marginal carbon factors and short-term carbon 
forecasts [23]. 

In addition to regulatory frameworks, innovative 
methodologies have emerged in academia. A systematic 
analysis of city energy systems modeling to address CO2 
emissions at various scales [25], as well as optimization 
methods for energy communities aiming for full decar-
bonization [8] emphasize the integration of spatiotempo-
ral dynamics in CA. Dynamic spatiotemporal models, 
such as those based on nighttime light data [12] and 
wind power spatiotemporal footprints [13] mentioned 
before. Stanford University proposed a method for cal-
culating carbon factors hourly within load-balancing 
areas, using a multi-regional carbon balance equation 
[26]. The University of Freiburg in Germany has utilized 
publicly available European grid data to compute hourly 
carbon factors [27]. The analysis of Vietnam’s ener-
gy-related carbon emissions using system dynamics [28] 
further refined spatiotemporal approaches. Similarly, 
sustainable energy planning for positive energy districts 
highlights the value of real-time CA [29]. Furthermore, 
approaches like real-time building energy carbon inten-
sity (CI) tracking and mixed-grid environment GHG 
emission assessments [30-32] underscore the need for 
localized, dynamic analysis.

In China, research on time- and region-specific CA 
for power grids is still in the exploratory phase. Tsinghua 
University has combined carbon emission analysis with 
power flow calculations to develop a theoretical frame-
work for carbon flow analysis in power systems [33]. 
This approach defined key matrices and vectors related 
to carbon flow, calculating emissions across generation, 
transmission, and distribution. The method revealed the 
carbon emission characteristics and distribution across 
different time and space scales, considering factors such 
as energy mix, generation efficiency, and electricity 
trading. Meanwhile, the State Grid Big Data Center and 
Shanghai Envision Digital have developed a new frame-
work for calculating regional and marginal CI using 
state estimation and power flow characteristics. This 
method assessed carbon emissions more accurately and 
supported emission reduction and energy optimization 
strategies [2][5]. Another Study has explored the decou-
pling effects and spatiotemporal dynamics of carbon 

emissions across China using advanced econometric and 
geospatial techniques [35]. At the governmental level, 
various standards and guidelines have been imple-
mented to support enterprise-level carbon audits and the 
calculation of regional CEFs [36].

Research on grid CEFs is evolving toward more pre-
cise, regionally detailed, and real-time accounting meth-
ods. To calculate CEFs accurately, researchers are 
focusing on the fine-grained collection and processing 
of data across all stages of the power system. This 
includes gathering comprehensive data on generator 
parameters [39], fuel supply chains [40], and transmis-
sion and distribution networks [41] to enable more pre-
cise calculations. To reflect regional variations in 
electricity-related carbon emissions, grid CEF studies 
are increasingly being regionalized, accounting for geo-
graphical, market, and other influencing factors. By 
calculating carbon factors for different regions, research-
ers provide more accurate insights into localized emis-
sions, supporting the formulation of region-specific 
policies. Additionally, the time-varying nature of grid 
carbon emissions has prompted a shift toward more 
dynamic and real-time studies. Real-time monitoring of 
power system operations and continuous updates to 
carbon factor calculations allow researchers to better 
capture temporal variations in carbon emissions. This 
approach enhances the responsiveness of CA, reflecting 
changes in power system operation and providing timely 
data for emissions management and policy-making.

2.2	 Research Significance
Different accounting scopes can provide varying levels 
of carbon emission data, which enhances the accuracy 
and comparability of assessments. At the substation 
level, carbon emissions can be precisely quantified for 
the specific areas served by each substation, providing 
valuable data for optimizing substation operations and 
management. At the administrative division (AD) or 
zonal level, such data enables the formulation of 
region-specific carbon reduction strategies based on the 
economic development and energy consumption pat-
terns of each area. Regarding voltage levels (VLs), dis-
tinguishing the carbon emissions associated with high, 
medium, and low voltage grids can aid in optimizing 
grid structure and operations, thereby reducing losses 
and emissions across different VLs [42]. 

Power Companies: can leverage data from different 
accounting scopes to optimize operations. Detailed 
carbon emission data allows for the identification of 
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high-emission points, enabling the development of tar-
geted carbon reduction measures such as optimizing grid 
structure, reducing line losses, and enhancing energy 
efficiency. Accurate carbon emission data also facilitates 
better participation in carbon markets, where companies 
can formulate carbon quota management strategies, 
achieving both carbon reduction and economic benefits. 
Calculating CEFs across different accounting scopes 
increases transparency, making it clearer where and how 
emissions originate and are distributed. This transpar-
ency helps ensure that power consumers fairly share the 
responsibility for carbon emissions and supports the 
equitable functioning of carbon trading mechanisms in 
the market [43].

Power Consumers: can make more environmentally 
friendly choices based on CEFs calculated across dif-
ferent accounting scopes. This includes guiding con-
sumption behavior: by understanding the carbon 
emissions of their region or VL, consumers can choose 
lower-carbon electricity options, such as using power 
during off-peak times or selecting green energy prod-
ucts. Targeted carbon emission data can also guide 
consumers to optimize their electricity usage, reducing 
energy waste and lowering their overall carbon foot-
print [44].

Governments: need to formulate precise carbon 
reduction strategies and policies based on carbon emis-
sion data from different accounting scopes. By utiliz-
ing data on carbon emissions across various regions 
and VLs, governments can create more targeted poli-
cies, such as regional emission reduction targets, dif-
ferentiated electricity pricing, or incentive measures. 
Detailed CEF data also helps governments better regu-
late carbon emissions in the power industry and assess 
the effectiveness of implemented policies [45].

The significance of multi-time durations accounting 
for grid CEFs can be summarized as follows:

1	 Reflecting real-time carbon emissions: The 
operational state of the power system constantly 
changes over time, with varying loads, generation 
structures, and energy consumption levels 
affecting carbon emissions. Temporal accounting 
enables dynamic tracking of CI at different time 
intervals, revealing discrepancies in emissions 
during peak and off-peak periods. This is crucial 
for the timely understanding of grid carbon 
emissions and for implementing more precise 
carbon reduction measures.

2	 Facilitating low-carbon dispatch optimization: 
Temporal accounting provides essential data for 
low-carbon economic dispatch in power systems. 
By analyzing the variation of CEFs across time 
periods, grid operators can prioritize the use of 
low-carbon and clean energy generation while 
minimizing reliance on high-carbon generation 
units. This optimizes the overall carbon emissions 
of the grid.

3	 Supporting carbon trading and policy formulation: 
Time-series accounting provides foundational 
data for carbon market development and carbon 
trading pricing. Significant differences in CEFs 
across different time periods allow governments 
and power companies to design more accurate 
carbon trading rules, ensuring that carbon costs 
are differentiated by time. This aids in policy 
regulation and carbon market efficiency.

3.	Calculation of Spatiotemporal Electricity 
Carbon Emission Factors

To comprehensively assess electricity carbon emissions, 
this section introduces a theoretical framework to ana-
lyze spatiotemporal emission factors and examines their 
applicability across various international contexts. By 
addressing both foundational principles and compara-
tive insights, the discussion aims to bridge the gap 
between theory and global implementation.

3.1	 Theoretical Framework
Carbon emissions in power systems originate from gen-
eration plants and propagate through the grid via active 
power flow, ultimately assigning emission responsibility 
to end-users based on their consumption. The carbon 
flow mechanism traces emissions from generators to 
consumers, linking physical power transfer with carbon 
accountability.

As shown in the abstract power flow diagram of adja-
cent regional grids in Fig. 1, each circle can represent a 
substation or the grid of an AD, and the dashed rectan-
gles represent the grids covered by different VLs. Let 
the set of adjacent regional grids that input power flow 
to regional grid n be denoted as x, and the set of regional 
grids that receive power flow output from regional grid 
n be denoted as y. The active power flow from grid i to 
grid n and from grid n to grid j during period t can be 
denoted as Pi n

t
,  and Pn j

t
, , respectively. Assuming that the 
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power flow from n to j contains a component from the 
power flow input by i, denoted as Pj i

t
, , and based on the 

proportional sharing principle [33], the following for-
mula (1) can be obtained:
P
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If the CEF of the active power flow from line i x∈  into 
n at t is CIit, then the carbon emission CEjt of the active 
power flow Pj it,  in the outgoing branch j is the sum of the 
contributions of all branches in x to the carbon flow in 
branch j [33], which can be expressed as formula (2):
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where CEit is the total carbon emission of the active 
power flow entering n through branch i during time 

duration t, and CIn
t
 is the CEF of grid n at t. Addition-

ally, considering the total generation and load within the 
regional grid, we can obtain the power flow carbon 
emission balance equation for the regional grid n as for-
mula (5):
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where Pi nt,  represents the active power flow into n at t, 
CIi

t represents the CEF of the active power flow into n 
at t (i.e., the CEF of region i); k is the total number of 
generators in grid n, Pgen kt

,  represents the generation 
output of generator k in grid n during the accounting 
period, and CIgen kt

,  represents the CEF reference value 
for generator k, which can be obtained from the emis-
sion baseline values of different generator types pub-
lished by local carbon emission benchmarks (e.g., 
Chinese non-green energy power generator carbon 
emission benchmark values published by Ministry of 
Ecology and Environment [47,48], U.S. net electricity 
generation and resulting CO2 emissions by fuel [49], or 
electricity carbon emission benchmarking in National 
Allocation Plans of internal European Commission 
[50]). Pn jt,  represents the active power flow from n to j, 
and L is the total number of loads in grid n, with Pload l nt

, ,  
representing the sub-load l in grid n. CInt is the CEF of 
grid n. For the grid boundaries n, it is scalable from 
Chinese regional grids to U.S. balancing authorities or 
European national systems, while the temporal resolu-
tion t is adjustable from 15-minute (one electricity 
market transaction cycle) to hourly (typical in Western 
systems).

Based on the above concepts, the direct carbon emis-
sion from power generation within regional grid n can 
be defined as formula (6):

CE P CIG n
t

k

K
gen k
t

gen k
t

, , ,
� �

�� 1
� (6)

where CEG nt ,  represents the direct CO2 emissions from 
power generation in grid n during t. Consequently, the 
CEF for a power generation grid n can be easily calcu-
lated by formula (7):

CI
CE

P
gen n
t G n

t

k

K
gen k
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,

�
�� 1
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Figure 1: Abstract power flow diagram of adjacent regional grids.
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where CIgen nt
,  represents the CEF for power generation in 

grid n during the accounting period. The CEF for a 
power consumption grid n at t, denoted as CIload nt

, , can be 
defined directly as formula (8):

CI
P CI

P
load n
t l

L
load l
t

load l
t

l

L
load l
t,

, ,

,

�
�

�

�

�
�
1

1

� (8)

where CIload nt
,  represents the CEF for the load in grid n 

during the accounting period.

3.2	 Comparative Analysis of International 
Applicability

The methodology’s transferability is evidenced through 
systematic comparison with international standards 
(Table 1). Three key universal features emerge:

1	 Temporal Granularity: While the proposed 
15-minute resolution exceeds the hourly 
reporting common in Western systems, the 
underlying time-discretization in Equations 
(3)-(5) remains valid across scales. This 
enables adaptation to grids with varying data 
availability.

2	 Spatial Scalability: The general proportional 
sharing principle (Equation 1) and carbon flow 
balance (Equation 5) can be independently 
validated in U.S. balancing authorities [26] and 
European national grids [51, 52]. The framework 
accommodates differing regional divisions 
through adjustable x (input regions) and y (output 
regions) parameters.

3	 Policy Integration: the multi-scale approach 
resolves a critical gap between: EU-style national 
reporting, U.S. sub-regional markets, and 
China’s provincial hierarchies.

4.	Spatiotemporal Carbon Factors of Target Grid

To validate the methodology, a case was implemented in 
a Chinese provincial grid. The generation, consumption, 
and external electricity inflow data for the TRG on a 
typical day are illustrated in Fig. 2, with a sampling 
period of 15 minutes. The TRG’s generation structure is 
predominantly based on thermal power, particularly coal-
fired plants. This composition produces a relatively high 
CEF for power generation in the TRG. In recent years, 
the grid has increased its investment in renewable energy 
sources (e.g., wind, solar) and cleaner transitional fuels 
(e.g., natural gas), though their overall contribution 
remains comparatively small. However, during active 
photovoltaic generation periods (from 7:00 AM to 5:00 
PM), the ratio of renewable energy in the TRG shows a 
noticeable increase. The layout of the grid’s power 
sources is relatively concentrated, with major thermal 
power plants located near coastal and suburban areas. 
While this centralized arrangement facilitated energy 
dispatch and management, it also leads to concentrated 
pollution emissions. The grid structure is complex, carry-
ing a substantial load for both urban and surrounding 
areas. Its multi-tiered structure (high, medium, and low 
voltage) requires refined management to minimize trans-
mission losses and enhance efficiency.

4.1	 Substation Electricity Carbon Emission Factor
The substation node CEF refers to the carbon emission 
intensity associated with the electricity transmitted or 
processed by a specific substation, calculated as a unit in 
the power system. This factor reflects the power sources 
feeding through the substation and their respective 
carbon emission characteristics, enabling more precise 
management and optimization of grid carbon emissions. 
For any substation, the output power must always bal-
ance with the input power.

Table 1: Comparison of Carbon Emission Factor Calculations Methods [26, 36-38, 51,52].

Country Time-Space Division Regional Interaction
U.S. Based on hourly generation and load data provided by grid 

companies, authorized by the U.S. Congress, hourly CEFs 
for 66 load balancing areas are calculated and published.

Sub-regions ensured minimal power interaction between 
regions; regional power interactions are not considered in 
the CEF calculation.

EU Hourly CEFs are calculated by countries. Power interactions with neighboring countries are considered.
China Annual provincial CEFs are calculated and published by 

Chinese Ministry of Ecology and Environment.
Not considered.

Proposed 
Framework

Based on the spatial regional division, the grid topology + 
AD are combined, and 15 minutes is used as the minimum 
measurement unit to form a series of CEF of different scales.

Grid topology and exchange of power and carbon flow between 
regional grids are considered, carbon tracking can be achieved.
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The substation electricity CEF is calculated using the 
carbon flow balance equation (Equation 5), providing 
the carbon emission intensity for each substation during 
the accounting period. As illustrated in Fig. 3, the real-
time power generation in the TRG during the accounting 
period is 10,937 MW, with coal power accounting for 
72.6%, wind power for 11.88%, and solar power for 
15.48%. The real-time load is 10,848 MW.

In Fig. 3, the nodes represent substations of 500kV 
and above, along with the topological connections of 
high-voltage transmission lines between them. The size 
of the nodes represents the power generation or load of 
each station, while the node colour indicates the CEF, 
with colours ranging from red to green signifying high 
to low CI. Since the substations include connected 
renewable energy units, the CEFs for all substations are 
lower than that of a pure coal-fired power plant. The 
carbon emission benchmark values for various types of 
non-green energy power generation units from 2021 to 
2024, as issued by the Ministry of Ecology and 
Environment of the People’s Republic of China [47, 48], 
are shown in Table 2. Among them, conventional coal-
fired units mainly use thermal coal, lignite, and 

Figure 2: Generation, load consumption, and external power inflow data for the target regional grid on a typical day.

Figure 3: Schematic diagram of carbon emission factors for 500kV 
substations.
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anthracite as primary fuels, while unconventional coal-
fired units primarily utilize coal gangue, coal slime, and 
coal-water slurry as fuels. Gas-fired units mainly employ 
natural gas as fuel. The table demonstrates that the 
carbon emission benchmarks for all types of units have 
been decreasing annually with the continuous develop-
ment of power generation technologies. In this case 
study, the carbon emission benchmark for conventional 
coal-fired power plants is set at 0.875 tCO₂/MWh, while 
that for gas-fired units is set at 0.363 tCO₂/MWh. For 
stations primarily using renewable energy, such as sta-
tions L, M, and N, the CEFs were noticeably lower, 
consistent with the 2024 IPCC benchmarks for clean 
energy technologies. 

Fig. 4 illustrates the time-series variation of the 
electricity CEFs for several typical 500kV substa-
tions. It is evident that the time-series changes in the 
CEFs for each station were significant. Particularly 
during periods of active photovoltaic power genera-
tion, the CEFs of the 500kV substations decreases due 
to the increased share of PV generation from both 
their associated substations and linked PV units. For 
certain stations, such as A and K, the reduction in 

CEFs is more pronounced because these stations are 
located near the coast and have a higher number of 
associated PV units. Conversely, substations, such as 
L, M, and N, have consistently lower CEFs, resulting 
in a lower average CEF (AVG.) for the TRG area than 
those substations where thermal power dominates 
generation and consumption. Using the overall 
regional grid CEF for CA would be unfair to some 
sub-regions and substations. If the CA is conducted 
using the average regional grid CEFs published by 
China’s Ministry of Ecology and Environment, the 
TRG area would have to align with the CEFs of its 
broader region (the North China grid), and the 
accounting period is annual. This would obscure the 
time-series variations shown in the figure.

4.2	 Electricity Carbon Emission Factor by 
Administrative Division

In China’s power system, ADs (e.g., provincial/munici-
pal boundaries) serve as fundamental units for grid oper-
ation and carbon accounting, as they align with the State 
Grid’s regional dispatch structure and government-led 
emission reduction targets. This study focuses on admin-
istrative regional grids for China’s context. Based on the 
AD principles provided by the government and power 
grid companies, the TRG can be divided into sub-re-
gional grids, treating each sub-grid as a node as shown 
in Fig. 5. By calculating the total generation, total load, 
total input power, and total output power of the sub-re-
gional grid, and applying Equation (5), the CEF of each 
sub-regional grid can be determined. Additionally, based 
on the substation CEFs derived from the above calcula-
tions, the CEF of the sub-regional grid can be obtained 
through a weighted average, as shown in Equation (9). 
Assuming that the regional power grid n contains K 
generating units and L loads, the regional average CEF 
is the sum of the total carbon amount of power genera-
tion and the carbon amount of load divided by the total 
power generation and total load in the region.

Table 2: Carbon Emission Benchmark Values for Various Types of Non-Green Energy Power Generation Units from 2021 to 2024 [47, 48].

Unit Type Primary Fuel Generation Benchmark Value (tCO₂/MWh)
2021 2022 2023 2024

Conventional Coal-Fired Units > 300MW bituminous coal, lignite or anthracite 0.8218 0.8177 0.7950 0.7910
Conventional Coal-Fired Units ≤  300MW bituminous coal, lignite or anthracite 0.8773 0.8729 0.8090 0.8049
Unconventional Coal-Fired Units coal gangue, slime or coal-water slurry 0.9350 0.9303 0.8285 0.8244
Gas-Fired Units natural gas 0.3920 0.3901 0.3305 0.3288

Figure 4: Time-series variation of electricity carbon emission factors 
for several typical 500kV substations.
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Fig. 5 presents the distribution of the CEFs of sub-re-
gional grids based on AD, calculated through weighted 
averaging. To highlight variations in regional CEFs, the 
figure marks the renewable energy stations at the 220 kV 
and 110 kV VLs (new green nodes). Different ADs 
encompass various substations, with colours represent-
ing the magnitude of the regional CEF, ranging from red 
to green, indicating high to low values. In Region 1, due 
to the limited presence of renewable energy units, the 
CEF is relatively high (R1: 0.766 tCO2/MWh), whereas 
Region 7, with multiple renewable energy stations, ben-
efits from a significantly higher proportion of green 
energy in its generation and consumption, leading to a 
lower regional CEF (R7: 0.290 tCO2/MWh).

The CEF on the generation side is influenced by the 
type of fuel and generation efficiency. Coal-fired power 
plants have the highest CEF, followed by natural gas, 
while wind, solar, and hydro energy contribute signifi-
cantly lower emissions. The average CEF for the 
regional grid is calculated to be 0.655 tCO2/MWh. The 
generation CEF depends solely on the amount of elec-
tricity generated and the carbon emissions produced. 
The higher the share of renewable and low-carbon 
energy in the grid, the lower the region’s CEF. 

The total carbon emissions input to a transmission 
station equals the sum of the carbon emissions of its 

connected input lines, and the substation’s CEF is the 
ratio of its total carbon input to its total active power 
input. If internal station losses are ignored, this ratio also 
equals the total output power. In transmission, line 
losses must be considered, with the carbon factor on the 
transmission line being equivalent to the carbon factor 
of the output station. 

On the consumption side, the CEF is affected by 
transmission line losses, load distribution, and the inte-
gration of distributed energy resources. The total carbon 
input to a load station equals the sum of the carbon 
emissions of its connected input lines, and its CEF is the 
ratio of its total carbon input to its total active power 
input or the total active power output of its connected 
lines and total load. For load stations with distributed 
generation, the impact of distributed generation must be 
accounted for, as it offsets the carbon emissions associ-
ated with centralized power supply. The consump-
tion-side CEF is further influenced by temporal variations 
in load profiles, with peak-demand periods often corre-
sponding to higher CEFs due to the reliance on less 
efficient peaking power plants. Therefore, demand-side 
management can significantly reduce overall CEFs.

The interaction between generation and consumption 
dynamics plays a critical role in determining the overall 
grid CEF. For example, a high share of renewable gen-
eration reduces the baseline CEF but may require adjust-
ments in consumption patterns to fully utilize low-carbon 
power, such as incentivizing consumption during peri-
ods of high renewable availability (e.g., sunny or windy 
days). Similarly, load stations equipped with energy 
storage systems can mitigate the temporal mismatch 
between renewable generation and demand, enhancing 
the overall carbon efficiency of the grid.

Fig.6 illustrates the temporal variations of electricity 
CEFs across different administrative grid regions. 
Similar to the substation CEFs, the temporal fluctuations 
of CEFs within each regional grid are significant 
throughout the day. The average CEF of the TRG aligns 
with the general trend observed in most ADs. However, 
notable differences are observed for regions with a 
higher proportion of thermal power generation (R1) and 
wind power generation (R7), where the CEFs deviate 
considerably from the regional average during each 
accounting period, though the overall trend remained 
similar. The temporal curves provides a clear visual rep-
resentation of the impact of increased renewable energy 
generation on carbon reduction.

Figure 5: Schematic diagram of carbon emission factors of sub- 
regional grids based on administrative divisions.
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4.3	 Electricity Carbon Emission Factor by Voltage 
Level

VL division refers to the classification of a power grid 
based on its operational voltage ranges (e.g., 500 kV, 
220 kV, 110 kV, and 35 kV). This approach facilitates 
the analysis of carbon emissions across the hierarchical 
structure of the power network, providing valuable 
insights into the carbon intensity associated with high-, 
medium-, and low-voltage grids. By identifying CI dis-
parities across VLs, this method supports grid optimiza-
tion strategies, improves energy transmission efficiency, 
and highlights the role of renewable energy integration 
at different levels.

The TRG can also be divided by VL to calculate the 
CEF, similar to the method used for calculating CEFs by 
AD. By calculating the total generation, total load, total 
input power, and total output power for each VL grid, and 
applying Equation (5), the CEF of each VL grid can be 
determined. The weighted average method can also be used 
for this calculation. Table 3 displays the CEFs of TRG cat-
egorized by different VLs. The 220 kV and above grid, 
dominated by thermal power plants, exhibits a higher CEF, 
whereas the low-voltage grid, with a high proportion of 
distributed renewable energy sources, has a significantly 

lower CEF compared to the high-voltage grid. Since the 
35kV grid primarily incorporates wind power units, while 
the renewable energy units in other VLs are predominantly 
solar PV, the CEF shows a more significant decline in other 
VLs during periods of substantial increases in solar power 
generation, as illustrated in Fig. 7.

In summary, all input parameters in Equations adhere 
to IPCC-recognized standards, ensuring international 
reproducibility. The 15-minute resolution provides finer 
temporal granularity than typical hourly Western report-
ing, while voltage-level insights offer transferable 
knowledge for grids with distributed renewables (e.g., 
Germany’s 380/220kV transition). The methodology’s 
spatial scope can be adapted to local needs - from U.S. 
balancing areas to European national grids - by adjusting 
the n boundary definitions in Equations.

5.	Comparative Analysis

In CA for the power sector, different spatiotemporal 
dimensions of calculation for the substation level, the 
AD level, and the VL have distinct advantages and dis-
advantages for utilities, consumers, and government 

Figure 6: Temporal variations of electricity carbon emission factors 
across different administrative grid regions.

Table 3: Carbon Emission Factors by Voltage Levels.

Voltage Level Emission Factor (tCO2/MWh) Green Power Proportion Thermal Power Proportion
500 kV 0.741 31.18% 68.82%
220 kV 0.682 37.32% 62.68%
110 kV 0.577 42.33% 57.67%
35 kV 0.339 62.59% 37.41%

Figure 7: Temporal variations of electricity carbon emission factors 
across different voltage levels.
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authorities. These methods influence the fairness of 
carbon emission data and subsequent policy formulation 
and implementation. Fairness in carbon accounting 
refers to the equitable allocation of emission responsibil-
ities and benefits among stakeholders, ensuring that 
each entity contributes to carbon reduction efforts in 
proportion to their emissions and capabilities. This prin-
ciple encompasses three dimensions: responsibility pro-
portionality, stakeholder equity, and temporal and spatial 
consistency. Fairness requires high-emission sources to 
bear larger reduction obligations, transparent data to 
enable equitable decision-making, and accurate repre-
sentation of variations across different regions and time 
periods. As such, fairness serves not only as an ethical 
guideline but also as a critical criterion for evaluating 
carbon accounting methodologies and their implications 
for policy and practice.

In this context, the fairness implications of spatiotem-
poral carbon accounting methods are evident. Substation 
accounting is precise but complex, AD accounting sup-
ports policy making but lacks granularity, and VL 
accounting is technically targeted but overlooks regional 
variations. The time-series accounting of grid CEFs not 
only enhances the accuracy of carbon emission calcula-
tions but also provides a scientific basis for optimizing 
power system dispatch, formulating carbon trading pol-
icies, and developing emission reduction strategies. 
However, it imposes high requirements on grid structure 
and data precision. Fairness evaluations require local-
ized management when there are significant disparities 
in CI, ensuring that high-emission sources face appro-
priate reduction pressures and responsibilities [47].

1	 Substation Carbon Accounting: Substations 
serve as nodes, directly reflecting localized 
power flow and carbon emissions, enabling 
identification of high-emission points. Utilities 
can use substation-specific CI data to optimize 
power dispatch, reduce line losses, and enhance 
energy efficiency at the substation level. Both 
utilities and power consumers can take targeted 
emission reduction measures based on specific 
substation carbon profiles. However, as the 
number of substations increases, the complexity 
of calculation and management also rises, 
requiring utilities to handle large amounts of 
granular data. Some substations may have 
particularly high or low carbon intensities due to 
their function or service area, potentially 

misrepresenting the overall regional CI. While 
substation-level accounting provides detailed 
local information, it may result in perceived 
unfairness for individual substations handling 
high loads or sourcing from carbon-intensive 
power. Balancing localized management with 
system-wide optimization is therefore necessary. 

2	 Administrative Division Carbon Accounting: 
Accounting at the AD level provides direct data 
support for government policy making, facilitating 
the implementation and assessment of regional 
carbon reduction strategies. It allows for holistic 
coordination, aligning power production and 
consumption with the region’s economic 
development, energy structure, and reduction 
goals. However, substations within a region may 
draw from different power sources and handle 
varied loads, meaning an average CEF may not 
capture intra-regional differences. Broad-based 
accounting may obscure high-emission sources, 
hindering precise carbon management and 
blurring carbon responsibility. While regional 
accounting balances local and overall differences, 
it may allow high-emission points to be masked 
by lower regional carbon levels, potentially 
making it difficult for utilities and consumers to 
assume clear carbon responsibilities.

3	 Voltage Level Carbon Accounting: VL accounting 
(e.g., 500kV, 220kV) reflects carbon emissions 
across high, medium, and low-voltage grids, 
highlighting the structural layers of the power 
network. This approach helps optimize grid 
structure and reduce energy losses. Utilities can 
adjust transmission and distribution strategies 
based on voltage-level CI profiles to optimize 
grid operation. While this method captures 
differences between VLs, it overlooks regional 
variations within the same voltage class, resulting 
in muted CI disparities. Carbon emissions 
between high- and low-voltage grids can differ 
significantly, and a unified accounting approach 
may mask local issues. Voltage-level accounting 
emphasizes the technical aspects of grid losses 
and efficiency but may not fully reflect uneven 
carbon emissions within a region, potentially 
compromising fairness.

4	 Addressing Carbon Factors Disparities: In cases 
where certain substations have high carbon 
factors, but the broader region has a lower 
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overall intensity, this imbalance often arises 
from uneven power supply structures. High-
emission substations should be accounted for 
separately to avoid masking localized issues 
within broader regional accounting. Combining 
substation-level accounting with targeted 
governance of high-emission sources can achieve 
more precise management. Governments can 
impose stricter reduction targets on high-
emission substations within a region or use 
carbon trading mechanisms to require these 
substations to purchase additional carbon 
allowances. Encouraging and supporting 
technological upgrades or the adoption of low-
carbon energy sources for high-emission 
substations, alongside the introduction of 
compensatory mechanisms (e.g., carbon capture 
technologies, green power procurement), can 
further mitigate carbon emissions in these cases.

The comparative analysis of spatiotemporal electricity 
CEF accounting methods reveals their diverse policy 
implications. Substation-level accounting supports 
localized carbon reduction policies, enabling targeted 
management of high-emission nodes through stricter 
reduction targets or technological upgrades. Local 
authorities could incentivize the adoption of low-carbon 
technologies via subsidies, grants, or carbon credits spe-
cifically targeting high-emission substations. 
Administrative region-level accounting facilitates 
regional carbon trading systems and proportional reduc-
tion targets aligned with economic and energy goals. 
Governments could introduce region-specific carbon 
trading systems or enforce reduction targets proportional 
to regional carbon intensity. Policies may also include 
infrastructure investment for energy efficiency improve-
ments tailored to the regional context. Voltage-level 
accounting informs technical optimization policies for 
grid operations. Utility companies could be mandated to 
adopt best practices for grid structure optimization, sup-
ported by regulatory policies that standardize efficiency 
benchmarks at different voltage levels. Time-series anal-
ysis underpins dynamic carbon management strategies. 
Time-series CEF data could inform real-time power 
dispatch strategies and peak load management policies, 
encouraging the use of cleaner energy during high-car-
bon periods and incentivizing off-peak power consump-
tion. Complementary measures could include public 
reporting of various level emissions to enhance 

transparency and accountability. The identified policies 
aim to ensure fairness and precision in carbon account-
ing, fostering effective implementation of carbon neu-
trality initiatives at both local and regional levels.

6.	Conclusion and Discussion

This study aimed to develop a robust spatiotemporal 
CEF calculation framework tailored to regional power 
grids, addressing the gaps in precision, spatial granular-
ity, and real-time adaptability identified in existing 
methodologies. Guided by the research questions, the 
study investigated how different partitioning strategies 
impact the accuracy and applicability of CEF calcula-
tions, explored their advantages and limitations, and 
proposed standards for integrating spatiotemporal CEF 
calculations into carbon reduction strategies and policy 
development. Based on a power grid in central China, 
this study investigated the differences in CEF calcula-
tions under various zonal accounting strategies. The 
comparative analysis revealed that substation-level 
accounting enables precise emission hotspot identifica-
tion but requires complex data management, while AD 
methods facilitate policy implementation at the cost of 
masking local disparities. Voltage-level accounting 
proved effective for grid loss optimization but failed to 
address spatial inequities in emission distribution. It 
analyzed the advantages and disadvantages of these 
accounting methods from the perspectives of power 
companies, electricity consumers, and government 
authorities. The study demonstrated that different 
accounting scopes provide various levels of carbon 
emission data, accurately reflecting the temporal carbon 
emission characteristics of substations, ADs, and VLs. 
This contributed to improving the precision and compa-
rability of CA. The proposed CEF calculation method 
integrated the carbon emission characteristics of genera-
tion units and regional energy usage within different 
periods, enabling the analysis of the coupling between 
carbon and electricity across multiple spatiotemporal 
dimensions. The findings offered valuable insights and 
support for the further development of CEF standards in 
China’s power grid, with significant practical 
implications. 

Due to the dominance of coal-fired power, the carbon 
factor of generation in the TRG area is relatively high. 
Coal combustion produces substantial CO2, placing the 
region’s power system among the highest emitters 
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nationally. As China advances its carbon peak and neu-
trality goals, this power grid faces immense pressure to 
reduce emissions. The local government has introduced 
several measures, such as phasing out outdated capaci-
ties, improving energy efficiency, and promoting clean 
energy. However, achieving substantial emission reduc-
tions will require time and technological advancements. 
The area is one of China’s first carbon trading pilot 
regions, and the power sector has gradually begun par-
ticipating in carbon market trading. Power companies 
must manage carbon quotas based on emission levels 
and actively explore low-carbon generation technologies 
to minimize carbon costs. 

The local government is also pushing forward poli-
cies to encourage renewable energy development and 
improve energy efficiency, such as supporting distrib-
uted solar power, wind energy projects, and substituting 
some coal-fired plants with natural gas. In the future, the 
TRG is expected to gradually increase the share of clean 
energy, reducing the role of coal in its generation mix. 
This transition will not only lower carbon emissions but 
also improve local air quality and the environment. To 
address the carbon challenge, the grid may increasingly 
rely on technological innovations, including enhancing 
the efficiency of thermal power units, developing carbon 
capture and storage technologies [55], and expanding 
the use of energy storage. Additionally, the grid will 
strengthen power cooperation with neighbouring prov-
inces, optimizing the allocation of electricity resources 
through cross-regional power dispatch and transmission, 
thus reducing overall CI.

The presented methodology offers a practical and 
adaptable framework for spatiotemporal electricity CEF 
calculations, driven by the growing demand for precise 
and transparent carbon accounting. From the perspective 
of driving factors for adopting the presented methodol-
ogy and its potential applications in practice, the frame-
work is capable of meeting the requirements of:

1	 Increasing Demand for Precise Carbon 
Accounting: Governments, utilities, and 
corporations are facing mounting pressures to 
meet carbon neutrality goals. Traditional CEF 
methods lack the granularity to provide 
actionable insights, particularly at the local or 
temporal level. The methodology enables 
precise, spatiotemporally detailed carbon 
accounting, aligning with stricter reporting and 
compliance standards, such as those under 

international agreements (e.g., Paris Agreement) 
and national carbon trading systems.

2	 Facilitation of Tailored Policy Formulation and 
Implementation: Policymakers require robust 
data to design equitable and effective carbon 
reduction policies. The presented methodology 
provides insights at various levels—substation, 
administrative region, and voltage level—
offering a comprehensive framework for policy 
development. Decision-makers can use the 
methodology to identify high-carbon areas, 
implement region-specific reduction targets, or 
establish carbon trading mechanisms. For 
instance, detailed data allows for stricter 
regulations on high-emission nodes while 
incentivizing cleaner energy practices.

3	 Support for Utility Companies’ Operational 
Optimization: Utilities are increasingly tasked 
with integrating renewable energy sources and 
improving grid efficiency. The methodology 
highlights carbon intensity disparities across 
different voltage levels and regions, helping 
utilities make informed decisions. The results 
can optimize power dispatch, reduce transmission 
losses, and prioritize renewable energy 
integration, leading to operational cost savings 
and reduced carbon footprints.

4	 Enhancement of Consumer and Stakeholder 
Engagement: As consumers and stakeholders 
demand more transparency, the methodology 
offers a way to provide detailed and trustworthy 
carbon accounting at a granular level. The 
transparency achieved through the methodology 
fosters public trust and accountability. Utilities 
and governments can communicate their efforts 
more effectively, encouraging consumer behavior 
changes, such as adopting off-peak consumption 
patterns or investing in green technologies.

5	 Adaptability to Emerging Carbon Market 
Mechanisms: As carbon trading markets evolve, 
participants need more detailed carbon intensity 
data to maximize their financial and environmental 
performance. The methodology provides the 
granularity needed for dynamic carbon pricing, 
helping utilities and industries to strategically 
participate in carbon trading or offset mechanisms.

While the spatiotemporal CEF accounting methodology 
offers significant advancements, it is not without 
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limitations. The reliance on high-resolution data, com-
putational intensity, and trade-offs between granularity 
and fairness represent key challenges. Additionally, the 
methodology’s context-dependent applicability and lim-
ited integration with broader economic models may 
restrict its versatility in certain scenarios. Addressing 
these limitations through data standardization, computa-
tional innovations, hybrid accounting strategies, contex-
tual customization, and cross-sectoral integration would 
enhance its robustness and applicability. These consider-
ations highlight the need for ongoing research and col-
laboration to optimize the presented approach for diverse 
practical settings.
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