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Abstract 
Bus Rapid Transit (BRT) has shown to be an efficient and cost-effective mode of public transport, and has 
gained popularity in many cities around the world. To optimise the operations and infrastructure it is 
advantageous to deploy transport models. However, microscopic models are very inefficient for large scale 
corridors due to the vast amount of data and resources required. Hence, it is relevant to investigate how to 
model and evaluate BRT efficiently. 

In this paper the effects of implementing BRT in Copenhagen is discussed including how to evaluate and 
model bus operations. For this purpose, a mesoscopic simulation model is developed. In the model bus 
operations are modelled on a microscopic level whereas the interactions with other traffic are modelled 
macroscopically. This makes it possible to model high-frequency bus services such as BRT lines in more 
details without the time consumption of micro-simulation models. The developed model is capable of 
modelling bus operations in terms of travel time and reliability including important mode-specific issues 
such as bus bunching. 

The model is applied to a BRT project proposal with different combinations of BRT elements. The model 
results show that infrastructure upgrades (busways and enhanced stations) ensure a reduction to travel 
time whereas no improvements to reliability occur. Upgrades to technology and service planning (pre-paid 
fare collection, boarding and alighting from all doors, special BRT vehicles, ITS, and active bus control) 
ensure an increase in service reliability whereas only small reductions to travel time are observed. By 
combining all BRT elements it is possible to obtain synergies where the improved reliability due to planning 
and technology elements makes it possible to utilise the infrastructure optimally. Hence, it is possible to 
increase commercial speed from 14.8 to 19.9 km/h and service reliability in terms of headway time 
regularity from 46% to 84% aggregated on both directions for the morning peak period making the 
implementation of BRT feasible from a pure financial point of view. 
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1 Introduction 
An efficient and attractive public transport system should provide high commercial speed,  high-frequency 
operations, user comfort, and a predictable service. In the congested city high running speeds can only be 
achieved in segregated infrastructure, user comfort requires high quality vehicles and stations, and 
predictable service needs control of, and protection against, external interference of the system. Such 
attributes are known from modern metro and light rail systems; for trains to run they need a specialised 
infrastructure, special vehicles, and a high level of control. In contrast, conventional bus services require 
nothing more than a basic vehicle to operate. Hence, conventional bus services are often subject to 
congestion, poor comfort, and a large degree of randomness. This is reflected in low travel speeds, less 
predictable service, thus a generally lower service quality.  

Bus Rapid Transit (BRT) is a concept which combines the positive service elements from rail services with 
the low costs and high level of flexibility of buses. The main elements of BRT are segregated busways, 
enhanced stations, specialised vehicles, improved service planning, pre-board fare collection, a strong 
identity, and Intelligent Transport Systems (ITS) (Wright & Hook, 2007).  

The amphibious nature of BRT using elements from both rail-based transit and bus-based transit makes BRT 
challenging to analyse. It is therefore relevant to develop a method that can model and assess the system 
in its elements efficiently. Traditionally microscopic models have been deployed, but they are time 
consuming for large scale corridors due to the vast amount of data and resources required. Therefore, this 
study aims at developing a mesoscopic model which is able to capture and assess both the different BRT 
elements individually and as a full BRT system. This includes a discussion of service reliability in order to 
propose a measure of how to evaluate reliability within high-frequency public transport systems such as 
BRT systems. The term BRT is used internationally to describe a large variety of bus systems ranging from 
systems with only few BRT elements installed to comprehensive systems that includes all features and 
hence are operating fully segregated from other traffic. As BRT can be implemented as a combination of 
different elements, it is furthermore relevant to study how the elements can be used to support each 
other. Hence, to test the model and evaluate the effects of introducing the elements of BRT individually 
and as a full system three BRT scenarios are analysed for a case study corridor in Copenhagen.  

The remainder of this paper is structured as follows. In section 2 the characteristics of service reliability is 
discussed as this is crucial for the modelling and assessment of high-frequency bus operations. In section 3 
the model developed as part of this study is introduced and described. In section 4 the case study corridor 
is introduced together with the three defined BRT scenarios, and the developed model is applied and 
validated on the base scenario. The effects of introducing BRT are presented in section 5. In section 6 the 
results are discussed, and section 7 concludes the findings. 

The paper is a summary of the findings in the Master’s thesis by the same authors at DTU Transport, hence 
more information can be found in (Ingvardson & Jensen, 2012). 

2 Service reliability of high-frequency public transport 
Service reliability is one of the important factors to cope with when managing public transport. Ultimately 
unreliable operations make it necessary for the users to add a buffer to the travel time thus extending the 
actual travel time (Ceder, 2007). 

Reliability can be defined as “continuity of correct service“ (Avizienis, Laprie, & Randell, 2000). This can be 
interpreted as maintaining the same service which from the passengers’ point of view would be equal to a 
combination of experiencing the same waiting time at the departure stop, and experiencing the same in-
vehicle travel time between departure stop and arrival stop independent of the departure time. For high-
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frequency public transport operations this implies a low level of variation in the running time, and 
maintaining a homogenous headway time between vehicles. In New York City reliability is measured by the 
service regularity. It is measured as the percentage of headway times that deviates less than 50% from the 
scheduled headway time for bus operations which have a scheduled headway time of less than 10 minutes 
(Nakanishi, 1997). By using this measure it is possible to evaluate to which degree vehicles arrive within the 
same headway time, and thus whether passengers experience a reliable service. 

The reliability term can be described by distributions (Ceder, 2007). Hence it is possible to measure public 
transport attributes related to reliability in statistical terms. The mean, variation and coefficient of variation 
are therefore useful measures for the level of variation of the operation, e.g. the running time. These 
statistical indicators for assessing reliability are used in a number of recent BRT studies in Denmark, 
including (Viatrafik, 2012) and (City of Copenhagen, 2011). Furthermore, Balcombe, et al. (2004) argues 
that the lack of reliability can be quantified by the standard deviation multiplied by the corresponding value 
of in-vehicle or waiting time, hence supporting the use of statistical terms. Thus, the effective waiting time 
includes the mean waiting time and the standard deviation due to unreliability. This also suggests that the 
standard deviation of the headway times should be considered in the examination of quality of service for 
bus operations. 

Hence, we propose to measure the service reliability of high-frequency BRT systems in a two-fold manner 
as sketched in Figure 1. 

 
Figure 1: Measures of service reliability for high frequency BRT operations as proposed by (Ingvardson & Jensen, 2012). 

The metrics applied in the evaluation of service reliability are: (1) the coefficient of variation of the running 
time (running time variability), and (2) the number of headway times within the threshold of +/- 50% of the 
scheduled headway time (headway time regularity). By this it is possible to capture the continuity of both 
running times and headway times. This ensures an indicative measure of the total travel time experienced 
by passengers on a given high-frequency public transport line. 

2.1 The bus bunching problem 
One of the most distinctive reliability phenomena in urban bus operations is the ‘bus bunching’ problem 
which has been the subject of much research in the past 50 years (Newell & Potts, 1964). The problem 
occurs because a small disturbance in the running time for one bus is magnified over time causing buses to 
pair up instead of maintaining a certain distance according to the headway time. 

One of the main reasons for bus bunching is the variability of the time spent dwelling at stops. If for some 
reason the bus is delayed, the headway time to the bus in front will be increased. When the delayed bus 
arrives at the next stop more passengers will be boarding at this stop due to the longer headway time. This 
causes an additional delay for the already delayed bus. Simultaneously, the subsequent bus will catch up 
with the delayed bus decreasing the headway time, thus collecting fewer passengers at the stop. The effect 
will be further magnified if passengers arrive in clusters or if the boarding process is inefficient. The 
bunching problem is illustrated by Figure 2. 

Service Reliability 

(1) Running Time Variability 
Coefficient of variation of running time 

(2) Headway Time Regularity 
Number of headways within a threshold of 
+/- 50% of the scheduled headway time 
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Figure 2: The principle of bus bunching where buses catch up with one another due to variable dwell times at stops. 

Based on (Ceder, 2007). 

The problem of bus bunching not only causes delays for the passengers in the delayed bus, but also 
increases the waiting time for passengers waiting at the stops. For high frequency routes where passengers 
are assumed to arrive randomly Wilson, et al. (1992) references that the expected waiting time for 
passengers can be expressed by: 

𝑤� =
ℎ�
2

 ∙ �1 + cov2(ℎ)� 

where 𝑤�  is the average passenger waiting time, ℎ� is the mean headway time, and cov(h) is the coefficient 
of variation of the headway time. This shows that if the variation in headway times is small the expected 
waiting time is half the headway time whereas the expected waiting time increases as the headway time 
variability increases. 

Additionally, overcrowding will result in a low level of comfort, or even result in the need for the bus to 
pass the stop without collecting passengers. Hence, it may be the majority of passengers that experience 
low comfort and increased travel and waiting times even though only a few buses will be bunched. 

3 Model approach 
The evaluation of BRT on an existing corridor requires a simulation of the existing situation of conventional 
bus service, and a simulation of the situation after the implementation of BRT. This is a special task as the 
differences between BRT and conventional bus services are related to both the infrastructure and to the 
specific operation of buses. Consequently, the requirements to the model type will be a detailed micro-
simulation of bus operations but taking into account the large scale of a project covering a relatively long 
corridor. 

When evaluating traffic on an operational level micro simulation models are the preferred instrument 
(Cats, Burghout, Toledo, & Koutsopoulos, 2010). Also recent Danish BRT studies including (Viatrafik, 2012) 
and (City of Copenhagen, 2011) utilises micro simulation models as the main tool. However, due to the high 
level of detail preparation of input data for micro simulation models can be time-consuming. The time-
consumption and complications related to micro-modelling increases with the size of the network making it 
inappropriate for larger networks, e.g. entire corridors (Cats, Burghout, Toledo, & Koutsopoulos, 2010). 

In this paper we propose to model bus operations by developing a mesoscopic model approach which 
simulates the operation of buses individually in a detailed manner whereas other traffic is macroscopically 
determined using distributional data. This is in line with the approach proposed in (Meignan, Simonin, & 
Koukam, 2007) where vehicle types are distinguished depending on the purpose and context of the model. 
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By this, operation dynamics of large-scale public transport systems can be modelled in greater detail 
without the complications related to data and calibration of micro-models (Cats, Burghout, Toledo, & 
Koutsopoulos, 2010). 

The operation of buses and their movements are simulated stepwise and independently based on 
observations of bus behaviour in Copenhagen and Istanbul conducted as part of (Ingvardson & Jensen, 
2012). Hence, conventional bus operations are simulated by use of current observations from bus line 5A, 
whereas observations from Metrobús in Istanbul have been used to model a situation with BRT features in 
Copenhagen. By utilising this form of data in the model it is possible to simulate the variation in operations 
without data on exact traffic levels in roads and intersections (Ceder, 2007). An illustration of the overall 
work flow of the model is sketched in Figure 3. 

Input Simulation Output

Network 
parameters

Service
parameters

Calibration
Control

Stations

Signals

Links

Bus Data

Passenger 
Data

 
Figure 3: Illustration of the model framework including input and output. 

3.1 Input 
The input to the model consists of characteristics related to the network, the passengers, and the bus 
operation. The input values are based on empirical data collected as part of (Ingvardson & Jensen, 2012) 
and official data from (Movia, 2011) which is implemented in a stochastic manner as statistical distributions 
as proposed by (Ceder, 2007). Hence, it is possible to simulate the variation of bus operations based on the 
statistical variation in the input parameters such as passengers boarding a specific bus, and the speed of a 
specific bus on a specific link. 

3.1.1 Network Parameters 
The network consists of links, signals, and stations. These are associated with a number of parameters, e.g. 
for links this include the length and optimal speed whereas it for signals include the cycle time and green 
time. 

3.1.2 Service Parameters 
Service parameters are related to the level of service and the operation of buses. Hence, this includes the 
boarding and alighting time per passenger, and the vehicle seat capacity. The dispatching input includes the 
headway time between departures at the starting node and the level of randomness by which buses are 
dispatched, i.e. the level of bus bunching at the departure stop. 

3.1.3 Calibration Controls 
To capture minor variations of bus operations a number of calibration control parameters have been 
implemented. These parameters include holding controls, and reflect the behaviour of a driver who catches 
up with a bus and thus holds back to ensure a certain gap between the buses. This also makes it possible to 
simulate and evaluate bus bunching controls as part of the analyses. 
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3.2 Simulation 
The simulation of buses is based on the characteristics of bus operations which suggest that the travel time 
of an individual bus basically consists of three elements: time spent to overcome distance, time spent 
dwelling at stops, and time spent waiting at signals. The time spent on links overcoming distance depends 
on the speed and acceleration profile of the vehicle and external factors such as congestion. Time spent at 
stops depend on a fixed amount of time for deceleration and acceleration and for opening and closing the 
doors. Additionally there is a variable amount of time used for passengers to board and alight the vehicle 
which is dependent on vehicle and service planning characteristics. The same is the case for signals along 
the route where the bus potentially uses a fixed amount of time to decelerate and accelerate and a variable 
amount of time for waiting at the signal. At each event for every bus the model will calculate the position, 
time and occupancy, e.g. when arriving at a stop these parameters are calculated based on the input 
variables. 

Update time and position 

Update time since 
previous bus

Calculate dwell 
time, and update 

occupancy

Update in motion dummy

StationLink Signal

Identify Link Type 

Pick speed from 
distribution

Is the bus
in motion? YesNo

Calculate running 
time for link

Add acceleration 
penalty

Calculate number of 
waiting passengers

Calculate passenger 
ticket type distribution

Is the bus bunched 
with previous bus?

No

Add bunching 
penalty

Yes

Green or red?

Calculate waiting 
time to next green

Is there 
any waiting 

passengers?
No Yes Green

Add waiting time 
at signal

Identify 
event type 

Is there any further 
events?

Start bus #n
Calculate start time and start occupancy 

based on time to previous bus

No Yes

Go to event

Red

Update time

Are there more 
busses?

Initialize

Yes

STOPGenerate 
output

Identify station parameters

Compare to bus arrival 
time

Identify signal circulation 
time

No

 
Figure 4: Detailed overview of the model simulation framework. More information can be found in 
  (Ingvardson & Jensen, 2012). 
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After initialising the model with relevant input the first bus is assigned. The bus initially identifies the first 
event. Then the time, distance travelled, and changes in occupancy at the event are calculated. The output 
from the event is an update of this information (time, location, and occupancy) which is used as input to 
the next event. At every event the bus calculates the time to the bus in front which is used in the 
calculation of number of passengers waiting at stops and to control bunching. At the same time a dummy 
variable denoting whether the bus is in motion or not is updated. This dummy is implemented as the travel 
time on a link is dependent on whether the bus is already in motion or needs to accelerate. When all buses 
have been through all events, i.e. travelled the entire corridor, it is possible to calculate and evaluate the 
effects for buses and passengers. 

3.2.1 Links 
The time spent by the bus travelling on links generally depends on trip time (e.g. hour, day, week, season), 
number of passengers, and the habits of the individual driver (Ceder, 2007). On individual links the travel 
time can be estimated according to traffic flow theory (Ortúzar & Willumsen, 2001). As the model only 
includes buses and not car traffic this model estimates the speed of the bus on a given link. 

The framework for calculating the speed of buses is based on letting the speed of the bus be randomly 
distributed thus simulating that the travel speed of buses both depend on local conditions of the road and 
on external factors such as driving behaviour. Hence, when a given bus arrives at a given link the speed on 
that link will be randomly drawn from an appropriate link-specific distribution. In this way it is possible for 
the model to calculate the time it takes for the bus to travel on that link. To include the fact that the 
characteristics of the road influence the speed of the bus the links in the network has been categorised into 
different link types, see Table 1. 

Link Type Description Distribution Mean 
[km/h] 

Standard 
Deviation 

[km/h] 
Comment 

W 
No disturbance from other traffic. This 
includes busways only. Normal 60.5 4.85  

N 
Low disturbance from other traffic. This 
includes bus lanes. Normal 37.4 3.60  

M 
Medium disturbance from other traffic. 
This includes mixed use lanes. Normal 26.0 3.18  

K 
High disturbance from other traffic. This 
includes road with some congestion. Normal 17.9 1.91  

H 

Very high disturbance from other traffic. 
This includes roads with major 
congestion. Normal 9.8 3.06 

Can only take on values 
in the interval [5,15] 

E 

Narrow roads. Low disturbance from 
other traffic, but bus is limited to run at 
low speeds. Normal 20.0 2.70  

Table 1: List of linktypes used in the model. 

The categorisation is based on both the travel speed and the traffic congestion level which is defined based 
on the actual speed, v, and the free speed of the link, vf, as (1 – v/vf). Both measures are included to take 
into account the variability of travel speed as this to a large extent depends on the congestion level. The 
congestion level on roads is based on output from a road traffic assignment model covering Copenhagen1 
whereas the distribution of travel speeds for such roads, i.e. mean and standard deviation, is based on 
empirical data from (Ingvardson & Jensen, 2012). 

                                                           
1 The model is based on OD-matrices from OTM version 4, and the assignment model Traffic Analyst used at DTU Transport. 
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Each linktype has been assigned a number of parameters which makes it possible to calculate the travel 
time for the bus on a given link. These parameters include the mean and standard deviation of the top 
speed on the link in addition to a penalty term which takes into account the acceleration of the bus. The 
latter is only included if the bus has been brought to a stop at the previous event such as at a red signal. 

To justify the assumption that the empirical data are random and may be approximated by a distribution 
the data is tested using the Kolmogorov-Smirnov goodness of fit test (Johnson, 2005). The test results all 
show that the assumption of a normal distribution cannot be rejected at neither a 95% nor 80% level of 
confidence. Thus, the normal distribution is accepted as providing a good fit for the data. 

Due to the nature of the normal distribution which is symmetric around the mean it has been necessary to 
limit the possible values for links of type H, cf. Table 1. The speed on these links can only take on values 
between 5 and 15 km/h. This has been done to avoid very low or even negative speeds in the model.  

3.2.2 Signals 
Signals are simulated as nodes and are defined by three input parameters: a cycle time, a green start time, 
and a green end time. From this the potential waiting time for a given bus approaching a signal until the 
next green is calculated. The input parameters are adapted from the current signal timing plans (City of 
Copenhagen, 2012). Signals that currently have bus priority implemented are simulated using the extended 
green time, and delays caused by other traffic have been implemented by use of a time penalty, e.g. when 
turning left crossing opposing traffic. 

3.2.3 Stations 
Stations are modelled like nodes with two parallel procedures being calculated simultaneously; the number 
of boarding passengers, and the number of alighting passengers. These are used to calculate the total dwell 
time for the bus. 

The dwell time depending on the number of boarding and alighting passengers when boarding and 
alighting through the same door can be estimated by a linear model of the form (Ceder, 2007): 

𝐷𝑖𝑘 = �
𝑏 + 𝛿𝐵 ∙ 𝐵𝑖𝑘 +  𝛿𝐴 ∙ 𝐴𝑖𝑘         , 𝑖𝑓 𝐵𝑖𝑘 > 0 𝑜𝑟 𝐴𝑖𝑘 > 0

0                                       , 𝑖𝑓 𝐵𝑖𝑘 = 𝐴𝑖𝑘 = 0  

For buses with multiple doors where boarding and alighting passengers use different doors the dwell time 
can be calculated as (Ceder, 2007): 

𝐷𝑖𝑘 = �
𝑏 + max (𝛿𝐵 ∙ 𝐵𝑖𝑘 +  𝛿𝐴 ∙ 𝐴𝑖𝑘)    , 𝑖𝑓 𝐵𝑖𝑘 > 0 𝑜𝑟 𝐴𝑖𝑘 > 0

0                                                , 𝑖𝑓 𝐵𝑖𝑘 = 𝐴𝑖𝑘 = 0  

Dik  Dwell time of the vehicle serving trip i at stop k including the time required for acceleration and 
deceleration (Dik = 0 if the bus do not stop at k) 

b Dead time portion including acceleration, deceleration, and closing and opening of doors. 

Bik Number of passenger boarding the vehicle serving trip i at stop k 

Aik Number of passenger alighting the vehicle serving trip i at stop k. 

δB Marginal dwell time per boarding passenger 

δA Marginal dwell time per alighting passenger 

This model suggests that the total dwell time for a bus can be estimated by a fixed time including 
acceleration and deceleration, and opening and closing of doors, and a variable time depending on the 
number of passengers boarding and alighting the vehicle. If the bus has separate doors for boarding and 
alighting passengers these events happen independently of each other, and the variable term of the dwell 
time then depend on the event which takes the longest time. However, if the bus has only one door, or the 
doors are used for both boarding and alighting, the events cannot happen simultaneously. For BRT the 
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latter will to some extent be the case as the doors are used by both boarding and alighting passengers 
hence creating conflicts. 

The number of boarding passengers at a bus stop, i.e. passengers arriving at a bus stop, is assumed to be 
random as the buses run at a high frequency with headway times less than 10 minutes (Nakanishi, 1997). 
Hence, the arrival intensity is assumed to follow the Poisson distribution similar to in (Cats, Burghout, 
Toledo, & Koutsopoulos, 2010). From this it follows that the time between passenger arrivals, the 
passenger headway time, is exponentially distributed (Johnson, 2005). Hence, the number of boarding 
passengers at a given departure at a given stop can be calculated based on the mean passenger arrival 
intensity for that given stop. The number of alighting passengers in the bus is calculated based on the 
occupancy in the bus at the given stop and the share of passengers alighting at that stop in the given time 
period. 

3.3 Output 
The output of the model consists of the time, position, and occupancy for all modelled buses at all events. 
This can then be used to evaluate level of service parameters such as waiting times at stops, travel time for 
buses and passengers, and headway time distributions. By this it is possible to evaluate the operation 
including the experienced service reliability as experienced by passengers, and to compare the effects 
obtained by implementing various BRT elements. 

4 Case Study Corridor 
The selected case study corridor is part of the busiest bus line in the Copenhagen area, 5A, which runs 
between Husum Torv and Sundbyvester Plads (Movia, 2011). In this paper the section between Nørreport 
station and Sundbyvester Plads is analysed. This segment is 6.5 km long and currently covers 18/19 stops in 
the southbound/northbound direction respectively. An overview of the segment can be seen in Figure 5. 

 
Figure 5: The 5A corridor between Nørreport station in central Copenhagen and Sundbyvester Plads on Amager. 

The current corridor has several BRT elements implemented including a high frequency, a special identity, 
and dedicated bus lanes on 44%/37% of the corridor for the southbound/northbound direction 
respectively. Despite these elements the operation suffers from low reliability and slow travel speeds 
(Ingvardson & Jensen, 2012). 

 

 

 

  N 
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4.1 Model Replication 
The validation of whether the simulated model results accurately replicate the real world has been done by 
comparing the model results to real-life as proposed by (Abdelfattah & Khan, 1998). According to (Cats, 
Burghout, Toledo, & Koutsopoulos, 2010) this can be done by a two-sample Kolmogorov-Smirnov test. The 
parameter that is being tested is the headway time distribution of buses at Amagerbro station in both 
directions, and at Nørreport station in the northbound direction as data were only available for these 
locations. The test statistics are shown in Table 2.  

Test parameters D KSa Pr > KSa 

Amagerbro st  Southbound 0.1197 0.7998 0.5444 

Amagerbro st  Northbound 0.1004 0.6630 0.7715 

Nørreport st Northbound 0.0869 0.5944 0.8716 

Table 2: The Kolmogorov-Smirnov test statistics for the null hypothesis that the distributions of the simulated and 
observed headway times are identical.  

The null hypothesis is that the distributions of the modelled and simulated headway times are identical. 
Hence, that the modelled headway times are a replication of the headway times experienced in real life. 
Based on the probability values the null hypothesis cannot be rejected at a 95% level of confidence. Hence, 
the model replicates reality with regards to headway time distributions in an acceptable manner. 

Optimally this validation method should be used for all relevant parameters in the validation process. 
However, the observed data on running times and time use shares do only include mean values from the 
buses and not distributional data. Hence, it is not possible to validate the model in this manner with 
regards to running time and time use shares. Instead the validation of these parameters is done by use of 
mean and standard deviation values. The main validation results are shown in Table 3. 

Northbound 
Average running 

time 
Running time 

variability 
Commercial 
speed [km/h] 

Headway time 
regularity 

Observed base 28 min 22 sec 8.9% 13.6 48% 
Modelled base 28 min 27 sec 6.4% 13.6 47% 

  

Southbound 
Average running 

time 
Running time 

variability 
Commercial 
speed [km/h] 

Headway time 
regularity 

Observed base 24 min 23 sec 6.1% 16.0 51% 
Modelled base 24 min 30 sec 5.5% 16.0 44% 

Table 3: Model simulation results3 for the base situation compared to the real base situation. 

The headway time regularity is measured as +/- 50% of the scheduled headway time. The shown value is 
the average at Amagerbro station and Nørreport station as these are the only stations where observed data 
is available. Optimally it should be an average of all stations on the route. The comparison shows that the 
model replicates reality well with regards to travel time as the model and observed average values are 
almost identical. However, the modelled service reliability measures are lower than the observed values. 
Hence, it seems that the model has difficulties simulating large reliability problems.  

The average running times for buses is shown in the time-space diagram in Figure 6. 

                                                           
3 Model results are for a typical morning peak period (7-9) including 72 buses (18 per hour per direction), and are averages of 50 runs. 
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Figure 6: Representation of average running times for all buses in the model simulation.   

The model estimates of the travel time between stops seem to reflect the observed values in an acceptable 
manner. That is, the variation between the observed and model estimates of accumulated times at stops 
are less than one minute for all stops. 

4.2 Scenarios 
The model is applied to analyse the effects of upgrading the current 5A bus line in Copenhagen to BRT 
standards. As BRT can be implemented on various levels it is relevant to investigate the effects of the 
different BRT elements individually, and combined. For this purpose three scenarios have been set up. This 
is outlined in Table 4. 

Infrastructure only Technology and service 
planning only 

BRT 

Infrastructure is upgraded, but 
the vehicles and ticketing system 
remain unchanged. 

Service planning and technology is 
optimised to BRT standards. The 
infrastructure remains unchanged. 

Infrastructure, service planning 
and technology are upgraded to 
BRT standards. 

Table 4: Overview of the performed analyses of upgrading bus line 5A to BRT standards. 

For the infrastructure only scenario segregated busways are applied on segments where possible while 
ensuring that existing traffic is not influenced significantly. Hence, we propose to upgrade the corridor so 
that a total of 2.9 km segregated busways and 1.2 km bus lanes are implemented along the 6.5 km corridor. 
In addition, a new shorter alignment between Rådhuspladsen and Hovedbanegården is proposed as this 
makes it possible to implement segregated busways on a longer section of the corridor. The station spacing 
is optimised by maximising the generalised travel costs; hence the number of stations is reduced from 19 to 
15. This results in an average station spacing of 430 meters. An overview of the upgraded infrastructure is 
shown in Figure 7. 
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Figure 7: The layout of the proposed BRT upgrade of the 5A corridor between Nørreport station and Sundbyvester Plads. 

The technology and service planning scenario only includes upgrades to the vehicle fleet and the operation 
of vehicles. The buses are upgraded to articulated buses with four double-doors, and pre-board fare 
collection is implemented. Articulated buses ensure higher capacity, and the double-doors allow for faster 
exchange of boarding and alighting of passengers. Pre-board fare collection allows faster and more 
homogeneous passenger boarding times. Furthermore, a dynamic holding strategy is implemented in order 
to prevent bus bunching. The investigated holding strategy delays a bus by 5 seconds at a bus stop if the 
headway time to the bus in front is less than 120 seconds. No changes are made to the infrastructure, 
hence the buses uses the current infrastructure and station layout. 

5 Results 
The main results of the different scenarios with regards to travel time through the corridor are illustrated in 
Figure 8 for the morning peak period (7-9). 

Northbound Southbound 

  
Figure 8: Time use analysis and running time variability for the morning peak period for the three BRT scenarios. The 

graphs show the time use in seconds, and the running time variability as a percentage of the total running 
time. 
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The infrastructure upgrades result in reduced running times whereas the dwell times are reduced when 
applying improvements to service planning. In the full BRT scenario both improvements are obtained. The 
running time variability is reduced by 25% when implementing full BRT, most significantly in the 
southbound direction. Furthermore, the results indicate that synergies appear when implementing an 
extensive BRT solution, see Figure 9. 

Northbound Southbound 

  
Figure 9: Travel time reductions for the morning peak period for the three BRT scenarios. 

The travel time reduction in the full BRT scenario is larger than the sum of the reductions obtained by 
adding infrastructure elements, or only improving the service planning. This indicates the synergies 
obtained when combining the BRT elements into a coherent project. As the dwell times and running times 
become more predictable larger synergies can be obtained by adjusting the signals more efficiently. 

The comparison of the improvements to the headway time regularity can be seen from Figure 10. 
Northbound Southbound 

  
Figure 10: Headway time regularity on selected stations during the morning peak period for the three scenarios. 

In all analyses the headway time regularity is improved. In the base situation the headway time regularity 
declines as buses move through the corridor, e.g. in the northbound direction the headway time regularity 
is 60% in the beginning of the corridor at Amagerbro station, and reduced to 40% at the end of the corridor 
at Nørreport station. This trend is reduced when upgrading the infrastructure or changing the service 
planning, and almost eliminated in the full BRT scenario. The headway time regularity is thus improved 
from 47% in the base situation to 84% in the full BRT scenario aggregated for both directions. This result 
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indicates that improvements are achieved as a combination of the different BRT elements, rather than the 
result of one distinctive change. This can be seen from Figure 11. 

 
Figure 11: Comparison of the improved headway time regularity for the morning peak period for the different analyses. 

The infrastructure improvements alone do not improve the headway time regularity since the key driver for 
bus bunching is the dwell time. It is therefore not possible to achieve a high headway time regularity by 
changing infrastructure only. Instead it is important to consider the dwell procedures and/or bunching 
controls. Where bunching control in terms of dynamic holding strategies increases the running time, all else 
equal, changes to the dwell procedures have positive effects for both running time and service reliability. 
The more efficient boarding and alighting procedure and bunching controls ensure an increase in headway 
time regularity of 18 percentage points which is further increased if also implementing infrastructure 
improvements due to the more efficient use of the infrastructure. 

5.1 Financial analysis 
The 6.5 km infrastructure upgrade is expected to cost approximately 350 million DKK (Ingvardson & Jensen, 
2012). If implementing infrastructure elements only the project is not feasible due to limited benefits and 
large construction costs. By only implementing technology and planning elements it is possible to transform 
the current yearly deficit of 5A to a marginal profit. Hence, this is marginally feasible due to the assumedly 
low costs of implementation. However, if implementing a full BRT solution the increased ticket revenue due 
to the increase in number of passengers and the decrease in operating costs make the project financially 
viable with an estimated payback time of 13 years. (Ingvardson & Jensen, 2012) 

6 Discussion 
Bus rapid transit holds many opportunities in improving public transport systems of intermediate and 
developed cities. However, its benefits are limited by its application; a system which consists of expensive 
infrastructure may not yield the anticipated effects. For BRT to be successful it requires intelligent service 
planning and active use of the technology available. The same flexibility that makes BRT a cost efficient 
alternative to its rail-based counterparts poses a threat to the efficiency of the concept. However, if 
planned efficiently large effects can be obtained. 

The mesoscopic approach proposed in this study makes it possible to simulate the elements of bus 
operations in detail while modelling less important elements on a macro-scale. The proposed approach 
makes it possible to evaluate the effects detailed as opposed to a macro assignment model, and without 
the need for large datasets and time-demanding model preparation as opposed to micro-simulation 
models. Hence, the mesoscopic model makes it possible to assess a public transport project in more details 
without the time consumption of micro-simulation models.  
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The proposed simulation model has been developed continuously and with a specific case in mind. This has 
put restrictions on the model as the data has been collected within the scope of the model and the case 
corridor. Hence, for the model to be adaptable to a general project, further research is required. The model 
approach does however seem promising. Due to the vast amount of data, which today is automatically 
collected via ITS, it seems appropriate to use distributions to describe bus operations instead of modelling 
all external elements individually, e.g. car vehicles. This has been seen to correctly represent current bus 
operations. This also makes the model appropriate as a simple tool for estimating BRT on other specific 
corridors. 

The results of the case study in Copenhagen showed that a full BRT system can achieve large effects, both 
with regards to travel time and service reliability. The improved reliability is mainly achieved through the 
implementation of elements that streamline the boarding process as long and varying dwell times are seen 
to be destructive for maintaining a reliable service. Most systems in Europe seem to focus mainly on 
elements that decrease the travel time, e.g. bus lanes. However, as this study shows the effects of the 
system can be significantly improved if implementing a full BRT system.  

The effects of the decreased travel time and increased reliability will most likely result in a higher number 
of passengers which will put pressure on the system. Due to the efficient boarding process with pre-board 
fare collection and vehicles with multiple doors the number of passengers does not influence the dwell 
time as much as seen in conventional bus operations. Hence, it is believed that the results can be obtained 
even if the number of passengers increases significantly. However, a detailed analysis of this challenge has 
not been performed as it is outside the scope of this study. 

These analyses mainly focus on the passenger effects such as comfort, running time, and reliability 
measures. The benefits achieved by implementing BRT can however also be realised as savings on 
operating costs. It is possible to lower the frequency and still obtain better service reliability and running 
time savings, hence maintain the current level of service for passengers. Hence, the effects obtained by the 
more efficient bus operations can be allotted to either the passengers or the operator/transport agency, or 
it can be split between them. 

7 Conclusion 
When assessing high-frequency public transport systems from the passengers’ point of view it is important 
to also consider service reliability. Based on the discussion of reliability in this study, we propose a joint 
measure of reliability which consists of evaluating both the headway times and the running times. More 
specifically, the service reliability measure is proposed to include i) the coefficient of variation of the 
running time, and ii) the number of headway times that are within +/- 50% of the scheduled headway time. 
This makes it possible to evaluate the quality of service in bus operations in a systematic manner as known 
from railways. In addition, by implementing a service reliability measure it will be possible for the transport 
agency to incentivise the operators to deliver a reliable service. 

The mesoscopic model approach proposed in this paper makes it possible to simulate bus operations 
including the diversity of BRT elements individually. Hence, the mesoscopic model is applicable when 
assessing a public transport project in more details without the time consumption of micro-simulation 
models. Notable features of the model include the possibility to assess different holding control strategies 
for reducing bus bunching and a detailed modelling of dwell times. 

The simulation of implementing BRT on bus line 5A in Copenhagen shows large increases to both travel 
time and service reliability, most significantly in the direction of the commute. When implementing 
upgrades to the infrastructure the travel time through the corridor decreases by 8-29% depending on 
direction whereas practically no improvements to service reliability occur. When implementing BRT 
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elements related to technology and planning the service reliability in terms of headway time regularity is 
improved from 46% to 64% whereas only small improvements to travel time are observed. However, by 
combining all BRT elements it is possible to obtain synergies where the improved reliability due to planning 
and technology elements makes it possible to utilise the infrastructure more efficiently. Based on the 
model simulations the commercial speed in the corridor is increased from 14.8 to 19.9 km/t and the 
headway time regularity increases from 46% to 84%, aggregated on both directions in the morning peak 
period. These results indicate that it is important to not only consider infrastructure elements such as bus 
lanes when improving bus-based public transport. It is important to also consider elements which can 
ensure an efficient boarding and alighting process as well as holding strategies to reduce bus bunching. By 
this, the case study shows that it is possible to improve travel time and service reliability significantly 
resulting in an increase in number of passengers and decrease in operating costs. Hence, the case study 
project is economically feasible with a financial payback time of 13 years. 
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