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Abstract 
One recovery strategy in case of a major disruption in a rail network is to cancel all trains on a specific 
line of the network. When the disturbance has ended, the cancelled line must be reinserted as soon as 
possible. In this article we present a mixed integer programming (MIP) model for calculating the best 
way to reinsert cancelled train lines in a rail network covered by a periodic timetable. Using a high 
abstraction level it has been possible to incorporate the temporal aspect in the model only relying on 
the information embedded in the train identification numbers of each departure. The model finds the 
optimal solution in an average of 0.5 CPU seconds in each test case.  

Introduction to DSB S-tog 
DSB S-tog (S-tog) is the operator of the city rail of Copenhagen, Denmark. Covering approximately 
170 km double-tracks and 80 stations the city rail of Copenhagen services the inner and outer parts of 
Copenhagen. At a daily level the operator carries approximately 30.000 passengers. S-tog is the only 
user of the tracks, which are controlled by the infrastructural owner BaneDanmark (BD). 
The S-tog network is formed by train lines covering the S-tog infrastructure by various compositions 
of routes depending on the timetable in use. Figure 1 shows the present line composition covering the 
network. The different parts of the network are called sections. There are 8 sections in the network; A 
central section, 6 fingers, and the circular rail. The lines merge in the central section as they intersect, 
and they de-merge as they re-enters the respective fingers according to their schedule. 
The structure of the S-tog network implies that a high number of lines intersect in the central section. 
The trains on each line all run with a 20 minutes frequency. Given 10 lines intersecting the central 
section this means that within 20 minutes there is at most 2 minutes between each train in the central 
section i.e. there is a 2 minutes average headway in between the trains. Such low headway implies that 
even small delays can have a significant negative effect on a high number of trains. 

 

Figure 1 The network of DSB S-tog in 2006 
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Trains and Depots  
Each line in the S-tog network is covered by 4 to 10 trains depending on the duration of the line 
circuit. Each train is covered by one or more train units. The coverage of a single train usually varies 
during the day in accordance with the expected passenger loads over the day. 
At all times a train number is associated with each driving train. The train number is changed every 
time a train turns at a line terminal to run in the opposite direction. For each train there is hence a 
series of train numbers during the day defining the tasks of that particular train during that day. The 
train units used to cover the train may be changed completely during the day. The number series of a 
train is called the train's train sequence. A train is defined by its train sequence and not by the train 
units covering it during the day. Figure 2 shows an example of a line covered by two trains where each 
train is covered by a train sequence and different train units during the day. 

 
Figure 2 Two train series together covering a train line 

There is much information embedded in the train numbers. These are five digit numbers indicating the 
train line, stopping pattern, direction and time of day. The first two digits is the line identification. The 
specific value of the third digit represents the stopping pattern used on the line at that train number. If 
the digit is an even number the train is south going and if it is odd it is north going. The fourth and 
fifth digits identify the time interval of day that the train number passes the central station, KH. For 
example, if the last two digits are 26, the train will pass KH at hour ⎣ ⎦ 83

26 =  as the third train in the 

8th hour i.e. the train will pass the central station between 8:40 and 8:59. The time within the hour is 
decided by the last two digits in the train number modular 3, where 3 is number trains in each hour. 
The remainders possible are 0, 1 and 2 describing respectively the first, second and third train during 
each hour. Especially the information of time of day embedded in the train number becomes useful in 
the context of reinsertion. 
Rolling stock depots are situated at the majority of line terminals and at the central station. The crew 
depot is located at the central station. Crew are transported from the crew depot to the rolling stock 
depots in situations where trains are started up, except for day start up where drivers are required to 
start their duties at the depot. The rolling stock depots serve as sinks and sources of the network when 
taking out or inserting train units. 
Recovery Strategies  
During the daily operation incidents occur that disturb the scheduled departures. These can be 
externally or internally caused incidents. Remedies can, to a certain extent, be employed to prevent 
internally caused incidents e.g. if the rolling stock is suspected to cause incidents by break downs, 
more frequent checks at the maintenance center can be planned. 
The external incidents are harder to compensate for in advance. There is, though, the possibility of 
constructing all schedules of departures, crew an rolling stock with included buffer times at relevant 
places in the schedules and according to the expectations of delays. It is not necessarily evident where 
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in the schedules it is optimal to locate the buffers. This information can be derived by e.g. simulation 
studies based on real observations of the schedules, c.f. e.g. Hofman et al. [7]. 
Even though precautions are taken to minimize the effects of incidents, it will not be possible to avoid 
delays completely. Therefore, different recovery strategies have been developed for recovering the 
schedules of departures, crew and rolling stock. 
Examples of recovery strategies are Trains turned earlier on their route (see figure 3), Train set to 
stop at all stations can be made drive-through train or Entire train lines can be cancelled. A drive-
through train is a train that does not stop on specific smaller stations. 

 
Figure 3 Illustration of an early turn around 

Managing recovery is a joint task for the infrastructural owner and the operator using the tracks. In the 
S-tog network the infrastructural owner has the responsibility of the departures being processed and 
therefore the decision authority on this issue. The rail operator has at its disposal the resources crew 
and rolling stock and has therefore the responsibility of matching these resources to the demand 
defined by the departures. 
When larger disturbances occur on the DSB S-tog network, the disturbed situation is often managed 
by taking out an entire S-tog train line i.e. all departures on a train line are cancelled. By taking out a 
train line more slack is created in the timetable, i.e. the headways are increased between train lines, 
which are time-adjacent according to the timetable. In this way buffer times are increased in the 
timetable and more room is created for absorbing the delays.  
A take-out is carried out by shunting the rolling stock to depot tracks as the trains arrive at rolling 
stock depots. In the process of take-out it is normally not allowed to drive ``backwards'' in the 
network. A train can only drive forward to the next depot to be taken out. Therefore, the trains in the 
circuit of the line in question ends up being distributed among the depots along the line according to 
where they were in the network when the decision of cancelling the line was made. It is crucial to 
realize that train units that are taken out at a depot are not necessarily used to cover the same trains 
when reinserted. Recall that a train is defined by its train sequence and not by the train units covering 
it.  

The Reinsertion Problem 
When an adequate level of regularity has been re-established in the operation, the cancelled train lines 
are reinserted according to schedule. The status of operation is evaluated by a train controller from the 
infrastructure operator. After the decision of initiating reinsertion has been made, the reinsertion 
should be carried out as quickly as possible under certain consideration regarding keeping order of 
trains. 
When a train is reinserted it is transported as empty stock from the depot tracks to the platform. A train 
driver arrives on a running train from the crew depot at the central station, KH, according to a 
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scheduled arrival. The train to be reinserted departs according to a scheduled departure on the relevant 
train line. 
The reinsertion scheme is calculated by a rolling stock dispatcher from DSB S-tog. The reinsertion is 
presently scheduled for one train line at a time. It is necessary to decide which trains already in 
operation can transport train drivers to the rolling stock depots, where trains are inserted. The number 
of trains to be inserted from each depot is determined by the dispatcher; however, it is not given which 
train units at the rolling stock depots should be inserted to cover which trains in the schedule of the 
train line.  
For the majority of lines, intermediate rolling stock depots exist along the line's route. As for the 
terminal depots, it is determined how many trains must be inserted from the intermediate depots in 
total. There is, however, for each intermediate depot a possibility of inserting trains in both directions. 
Inserting in both directions decreases the finishing time of the reinsertion process. 
The problem is now to decide when the reinsertion shall start on each rolling stock depot. This choice 
must be made taking into account the order of trains on several levels.  
Firstly, if a reinsertion has begun from a certain rolling stock depot, the remaining trains to be inserted 
from that depot must be inserted in order according to frequency, so that there at no time occurs a 
frequency-interval with an uncovered departure. For example, at DSB S-tog the frequency is 20 
minutes on all train lines. If 3 trains must be reinserted from Farum rolling stock depot and the first 
reinserted train departs at 15:18, then the remaining 2 trains must be reinserted and depart at 
respectively 15:38 and 15:58. Inserting the remaining two trains at 15:58 and 16:18 would mean a 
vacant frequency interval at 15:38 i.e. order would not have been kept and that would be an illegal 
solution.  
Secondly, the order with respect to frequency must also be kept across rolling stock depots. After the 
initiation of reinsertion, the time between two adjacent departures on any station in the network must 
always be the frequency of 20 minutes.  
One of the advantages of the reinsertion model is the solution time of the model compared to manual 
calculations. Also, it is possible to calculate a reinsertion plan immediately when the distribution of 
trains among depots is known after the take out. As the timetable is periodic the reinsertion scheme 
calculated will in principle be the same except for the exact train numbers that must be inserted. This 
might lead to some advantages with respect to coordinating the train driver schedules according to the 
reinsertion, thereby preventing reinsertion schedules being discarded because of the lack of drivers. 

References 
No literature has been found that resembles the exact problem of reinserting train lines. The problem 
is, however, similar to that of assigning resources to tasks and of making lines of work (also called 
pairings) for each member in a set of resources. The objectives differ in these problems. In the 
assignment of tasks to resources, the objective is most often to minimize the total cost of resources, 
see for example Gamache et al. in [1]. In the reinsertion problem we minimize the time of the final 
task performed. 
Typically, general crew scheduling problems are exceedingly larger than the reinsertion problem. A 
well-documented approach for solving these large problems is by formulating the problem using a 
column generation model. This is done in a substantial number of papers. We refer to Jaumard et al. 
[2] and Eveborn and Rönnquist [3]. 
The structure of the crew scheduling problems is also found in the vehicle routing problems, where 
routes among a known set of customers are found to be for a fleet of vehicles. The column generation 
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approach for solving the vehicle routing problem with time windows was introduced by Desrosiers et 
al. [4] in 1984. 
Resource scheduling problems are also often solved heuristically. In Cai and Li [6] and Wassan and 
Osman [5] different heuristics procedures are presented. Mason et al. [8] presents a method for 
personnel rostering that integrates integer programming procedures with heuristics and simulation. 

Productions-data Regarding Train Numbers and Timetables 
Because of the structure of the reinsertion problem, this can be solved given relatively little 
information. There are two types of data necessary in the model. The model must be built with 
background data based on the long term planning of timetable and rolling stock. When a reinsertion 
plan is needed in the operation, certain information of the real time situation is necessary.  
From the long term planning it is necessary to know for each rolling stock depot how many trains (on 
the cancelled train line) can depart from the relevant rolling stock depot from the departure time of the 
first train that can transport drivers from the crew depot station to rolling stock depots, until the 
departure time of the first train that can be inserted from the relevant rolling stock depot. Furthermore, 
it is necessary to know the number of trains on the train line. 
As mentioned in Section Trains and Depots, each train in the train line covers a series of train 
numbers collectively forming a train sequence for each train. For the mathematical model it is only 
necessary to be able to differ between the trains. It is sufficient to make one calculation for each 
distribution of trains over depots. This is due to the periodic format of the timetable which implies that 
the solution to the reinsertion problem is generic (in that the structure is independent of the specific 
times given in the timetable). As there is only limited number of distribution of trains among depots, 
all solutions can easily be generated in advance and updated according to time of day in the real time 
situation. 
In real time it is necessary to know for each rolling stock depot how many trains must be inserted from 
each depot. By comparing this information with the information of the first driver-carrying train, the 
rolling stock dispatcher can easily lookup the relevant solution. 
For the rolling stock dispatcher it is also necessary to be able to identify the specific train numbers on 
the train line from each rolling stock depot. Additionally, the train numbers that will be used to 
transport the train drivers to the rolling stock depot must be identified. That is, the train numbers are 
synonymous with knowing the time of day of insertion. All train numbers relevant in the reinsertion 
process can be calculated using the train number of the first train that can transport train drivers to 
rolling stock depots. 
The solution looked up by the rolling stock dispatcher is used to find the train numbers of respectively 
the trains to be reinserted and the trains to transport drivers. 
A real life example 
Two lines, H and H+, run on the route between Frederikssund (FS) and Farum (FM). When large 
disturbances occur involving the sections of this route, the H+ line is typically taken out. The 10 trains 
forming the line H+ circuit are taken out on the terminal rolling stock depots, FS and FM, and on the 
intermediate depots of Ballerup (BA) and KH. Recall that the crew depot is at KH.  
An example of distribution of the H+ trains over depots is that 2 trains are taken out on each of the 
terminal depots and 3 on each of the intermediate depots. One scenario of reinsertion is then that two 
trains must be reinserted from each terminal depot and three trains must be reinserted from each 
intermediate depot where insertion is possible in both directions. 
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Figure 4 illustrates the driver-carrying trains. Line a and d are the first trains going respectively south 
and north that can bring out drivers to depots. As the first driver-carrying train (in each direction) 
passes each depot the reinsertion at the depots can be initiated. 

 
Figure 4 The straight lines a, b and c illustrates driver-carrying trains going south and the lines d, e and f 
those going north. The lines initiate reinsertion at the different depot as they pass them 

In the reinsertion model the initiation time of reinsertion is counted in integral time slots. It is counted 
how many trains on the train line in question was planned to leave the depot from the decision of 
reinsertion until the first driver-carrying train reaches the depot. In Figure 5 there are 2 trains 
originally planned to leave the FS depot before reinsertion can begin. 

 
Figure 5Illustration of the reinsertion start time at the FS depot. From the decision of reinsertion until 
the reinsertion can begin at the FS depot, there are two scheduled trains that can not be reinserted as the 
driver-carrying train has not yet reached the depot 

The exact approach of a reinsertion is illustrated in Figure 6. For each of the figures a) - d) trains are 
inserted from a depot. Observe that order is kept at all time. There are no vacant frequency intervals at 
depots and there are no stations where passengers experience vacant frequency intervals. Illustrated in 
red on a), b) and d) are the driver-carrying trains transporting drivers for the reinsertion. 

The Mathematical Model 
The goal of the model is to decide which train, Ii∈  should be inserted from which depot, Kk∈ . 
Each originally scheduled train i  (before take out) must be covered with train units and hence 
reinserted in operation according to schedule. Also it must be decided for each train in which time slot 

Jj ∈  the reinsertion will be carried out. 
The model decides which trains will run but it does not consider which train units to use to cover the 
trains. It is assumed that the information of distribution of train units across depots is provided as input 
and thereby sufficient in number to cover the trains. 
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on a), b) and d) is the driver-carrying trains transporting drivers for the reinsertion. 

 
Figure 6 Illustration of a reinsertion. In a) trains are inserted from depot FS, in b) from depot  BA, in c) 
from KH and in d) from FM 

The variables representing which train to be inserted from which depot and when are binary: 

 
⎩
⎨
⎧

=
otherwise 0

depot  from slot  time  in inserted is train  if1 kji
x k,j,i  

If we consider the trains to be inserted as tasks and the depot as a resource, the problem strongly 
resembles an assignment problem of assigning crew to tasks. Each task in this case must be covered 
once. This is guaranteed by the partitioning constraints (1): 
 ∑ ∈∀=k,j k,j,i Ii,x 1  (1) 

Equations (2) are included so that no time slot for a depot or train is covered more than once: 
 ∑ ∈∈∀≤i k,j,i Kk,Jj,x 1  (2) 

In the model it is known how many trains are to be inserted from each depot. Therefore, binding 
constraints exist for each depot. They differ for respectively terminal and intermediate depots. As the 
trains are inserted only in one direction at the terminal depots, TKk∈  the binding constraints for these 
depots are: 
 T

kj,i k,j,i Kk,Dx ∈∀=∑  (3) 

As mentioned earlier the speed of insertion is increased when insertion on intermediate depots are 
made in both directions. In the model it is chosen for each intermediate depot to insert half of the 
trains in one direction and the other half in the other direction. When an odd number of trains is to be 
inserted from a depot, the model decides how many must be inserted in each direction. This is handled 
in the model by including two depots for each intermediate depot. The set of intermediate depots is 
denoted IK . It is constructed by sets of two depots together denoting one intermediate depot where 
reinsertion can be carried out in l  directions, I

l
II K...KK ∪∪= 1 , where Ll ∈ . Fejl! Objekter kan 

ikke oprettes ved at redigere feltkoder. is the set of directions, which in the S-tog network for all depots 
is north or south. The total set of depots is IT KKK ∪= . 
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The sum of trains inserted in both directions should equal the total number of trains to be inserted from 
the intermediate depot. Current practise is that half of the trains are inserted from the intermediate 
depot in one direction and the other half in the opposite direction. Equations (4) ensure that the 
number of trains inserted in each direction is the total number of trains to be inserted divided by 2. If 
an odd number of trains are to be inserted, the result is rounded up or down to nearest integer 
depending on which is more favourable to the model. See equations (5) and (6). 
 I

lk kk,j,i k,j,i Kk,Ll,Dx ∈∈∀= ∑∑  (4) 

 II
kj,i k,j,i Kk,Dx ∈∀=∑  (5) 

 ⎥⎥
⎤

⎢⎢
⎡≤⎥⎦

⎥
⎢⎣
⎢≥

22
kI

k
kI

k
D

D
D

D  (6) 

It is crucial that certain orders are kept as the trains are inserted. As mentioned in The Reinsertion 
Problem order should be kept within depots and between depots. Also, reinsertion must not begin on a 
depot before a train driver can arrive from the crew depot to drive the train to be reinserted. 
To assure that each train is inserted only once, it is necessary to take into consideration the train 
sequences of each train describing in which time slot each train is at the different depots. To handle 
this a constant is introduced, k,j,iin .  

 
⎩
⎨
⎧

=
otherwise 0

slot  time  indepot  fromdepart may   train  if1 jki
in k,j,i  

It is not possible to insert a train from a depot, if it is not there at that specific time slot. We refer to 
this as the order between stations and it is assured by equation (7). 
 Kk,Jj,Iiinx k,j,ik,j,i ∈∈∈∀≤  (7) 

To model the order within stations we introduce two sets of integer variables, kstart  and kend . Also, 
we introduce equations (8) to (11). Equations (8) connect the start and end variables. Equations (9) 
assure that reinsertion is not begun before the first driver can arrive at the depot. For the purpose of 
determining this a constant, kC , is given. The constant indicates how many trains has been scheduled 
at depot k  from the time of the decision of reinsertion until drivers are able to reach the depot, cf. 
Figure 5. Equations (10) and (11) ensure that when a reinsertion has begun on depot, it is carried out 
continuously in adjacent time slots. 
 ∑ ∈∀=−+ j,i kk,j,ik Kk,endxstart 1  (8) 

 Kk,Cstart kk ∈∀+≥ 1  (9) 
 Kk,Jj,Ii),x(Mjstart k,j,ik ∈∈∈∀−⋅+≤ 1  (10) 

 Kk,Jj,Ii),x(Mjend k,j,ik ∈∈∈∀−⋅−≥ 1  (11) 

Much of the information of the timetable and departures is embedded in the train numbers. The 
periodic form of the timetable supports this formulation. The train numbers to be inserted when k,j,ix  

is 1 is calculated from an initial train number on a train able to carry train drivers to the depots and 
some constant describing the relationship between the train numbers on the driver-carrying line and 
the line to be reinserted. The train number is adjusted according to the time slot in which it is to be 
inserted. See equation (12). 
 Kk,Jj,Ii,x)jTrainConstinInitialTra(rTrainNumbe k,j,ikk,j,i ∈∈∈∀⋅++=  (12) 

The objective of the model is to reinsert as quickly as possible. This is assured by an objective 
function of minimizing the maximum inserted train number, mberMaxTrainNu . As information of time 
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of day is embedded in the train numbers this equivalent with minimizing the latest time of reinsertion. 
This is achieved by minimizing the maximum value of the last two digit number in the train number. 
 mberMaxTrainNuMinimize  (13) 

 Kk,Jj,Ii,rTrainNumbemberMaxTrainNu k,j,i ∈∈∈∀≥  (14) 

Computational Experience 
The running time of the model is not relevant in real time as reinsertion schemes are generated in 
advance and looked up at the relevant time. Test results do, however, show that the running time of the 
model on average is only approximately 0.5 CPU seconds, i.e. the model solves the problem in real 
time for the relevant problem instances. The real-time approach is not chosen partly due to software 
license issues, partly due to the generic nature of the reinsertion schemes. 

An Improved Planning Process 
The initial request for a tool for calculating reinsertion was made by the rolling stock dispatchers 
themselves. They regarded the problem of creating reinsertion schedules by hand as complicated and 
time demanding. First a tool was made that was not based on the principles of MIP. It was merely a 
spreadsheet calculating the reinsertion plan from basic knowledge of the distribution of trains, the first 
driver-carrying train and a large set of if-then-else-loops. The project of creating an optimization 
model for calculating the reinsertion was started mainly due to the quite complicated task of updating 
the initial reinsertion tool. The mathematical model of the reinsertion problem has been implemented 
in Gams and solved in Cplex. The initial reinsertion model is still in use. It will be replaced by the 
MIP model during the autumn 2006. 
Solutions are generated with the MIP model for all possible scenarios of distributing trains over rolling 
stock depots. The solutions are then stored and the rolling stock dispatcher can look up the solutions 
via a spreadsheet. 
The reinsertion model has increased the level of service offered to the passengers. Earlier, when the 
rolling stock dispatcher had to make the calculation of reinsertion by hand, the solutions where either 
not generated because it took to long time to calculate a solution, or a solution was generated with a 
longer total reinsertion time than the optimal solution. In the first case the train lines would remain 
cancelled for the remainder of the day. 
Besides the passenger service improvement, the reinsertion model decreases the level of stress for the 
rolling stock dispatchers. Solutions can be generated immediately to satisfy the demand of the train 
controllers in charge of the reinsertion decision. This has rendered a more efficient planning process 
with resources left for other tasks. 
Also the maintenance of the model has been eased to the satisfaction of the analyst updating it. The 
MIP model is easy to update according to a new periodic timetable. This is done simply by changing 
the set of constants presently used in the model and generating a new set of solutions.  

Further Developments 
Presently the reinsertion model is used only for scenarios where a cancelled line needs to be inserted 
into a running operation, in which running trains can transport drivers to rolling stock depots. Future 
developments on the model will enable complete start-ups where trains can be inserted as the first on 
their route. This requires that train numbers are calculated from virtual train numbers. 
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The number of trains to be reinserted on each depot is input to the model. Occasionally the number of 
trains available for operation on the depots is larger than the number of trains that has been taken out. 
It seems very relevant to change the model to account for this fact in such a way that the model 
decides the exact number of trains to be inserted from each depot, ensuring that the total number of 
trains reinserted is the number of trains needed to cover the line. 
The present model works with a distribution of trains reinserted in each direction on intermediate 
depots of half reinserted in one direction and the other half reinserted in the other direction. Further 
development on the model involves changing the constraints (6) to enable solutions where the 
numbers of trains reinserted in each direction on each intermediate depot are decision variables. 
At some of the routes of the S-tog network more than two lines cover a route simultaneously. A 
relevant recovery scenario is that more than one line is cancelled along the route. It would be relevant 
to adjust the reinsertion model so that it can coordinate and give the results for the reinsertion of more 
than one line at a time. In the model this would mainly mean modification of input.  
The quality of solutions generated by the reinsertion model strongly depends on the distribution of 
trains on depots. At the time of disruption, take out is carried out with no regards to a later reinsertion. 
There is no time for rearranging trains at depots so that the best possible reinsertion is possible at a 
later time. There will though be the possibility of making small changes in the take out plan. For 
example, it might be possible to drive forward to next-closest depot instead of taking it out of 
operation at the closest depot. The evaluation of which is best can be made by the reinsertion model. 

Conclusion 
Because of the information embedded in train numbers the MIP model has been made at a high level 
of abstraction. Regardless of this, the reinsertion model can be used in operation in its current form. 
The MIP model is easy to update according to a new periodic timetable. This has decreased the 
possibility of the rolling stock dispatchers having to wait for an updated version. 
The solutions generated with the reinsertion model always generates optimal solutions with respect to 
the latest inserted train. This was not often achieved when the reinsertion was calculated by hand. 
Frequently, the train line remained cancelled for the remainder of the day.  
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