The Emission consequences of using biodiesel and bio ethanol as a fuel for road transport in Denmark


  • Morten Winther Aarhus Universitet
  • Flemming Møller Aarhus Universitet
  • Marlene S. Plejdrup Aarhus Universitet
  • Thomas C. Jensen Danmarks Tekniske Universitet



Biofuel emissions, CO2, Biodiesel, Bio ethanol, E5, E85, Road transport


This article explains the emission consequences of using biodiesel and bio ethanol as a fuel for road transport in Denmark calculated in the REBECa project. For the years 2004, 2010, 2015, 2020, 2025 and 2030, two fossil fuel baseline scenarios (FS) are considered characterised by different traffic growth rates. For each FS, two biofuel scenarios (BS1, BS2) are considered with a 5.75 % biodiesel/bio ethanol share in 2010 as a common starting point. From 2010, linear growths are assumed for BS1 (10 % in 2020) and BS2 (25 % in 2030).

The emissions presented in this study are vehicle based; a separate Well to Wheels (W-t-W) assessment of the total emission consequences of producing and using biofuels has been conducted in a different part of REBECa. The maximum CO2 emission difference between FS and BS2 becomes 26 % in 2030. The NOx and VOC emission variations between FS and both biofuel scenarios are 3 % or less. For CO and TSP the largest emission differences, 5 % and -12 %, respectively, occur between the FS and BS2 scenarios in 2030. The biofuel emission impacts are insignificant for NOx,VOC, CO and TSP compared to the generally large emission reductions predicted in all scenarios driven by the gradual strengthened emission standards for new vehicles, by far outweighing the emission influence from biofuels and traffic growth.

The emission estimates for NOX, VOC, CO and TSP presented in this study are less certain than for CO2 due to the relatively scarce biofuel emission data implemented in the calculations. As a consequence, the obtained emission results must be assessed with care. Bearing in mind these uncertainties, the calculation approach for emissions from biofuel usage presented in this study can be used as a tool to carry out sensitivity analysis, environmental impact assessment studies, or for research purposes as such.