Can Circular Economy Strategies Limit the Prospective Dysprosium Demand in the European Union?
DOI:
https://doi.org/10.54337/plate2025-10333Keywords:
Dysprosium, Rare earths, Demand, Climate targets, Circular economyAbstract
Dysprosium (Dy) is a high critical rare earth element, which is basically used for improving the thermo-magnetic properties in various low carbon products. This research provides a detailed examination on the evolution of Dy demand, in-use stock, and end-of-life (EoL) under ambitious climate targets and demand shrinkages that can be expected due to the implementation of two circular economy strategies: material efficiency and end-of-life recycling in 13 product sectors in the European Union from 2022 to 2050. Our results indicate that future Dy demand, in-use stock accumulation, and EoL generation are likely to be exacerbated by High-APS (Announced Pledges Scenario) and High-NZE (Net Zero Emissions by 2050 Scenario). Moreover, the circular economy strategies used in this study will contribute to significant decreases in the future Dy demand when such strategies are combined and applied in a high magnitude under High-APS and High-NZE scenarios. Recent efforts in the partial and full elimination of Dy mainly in high-tech products such as wind turbines and electrical vehicles are admirable, however, it is necessary to more focus on improving the implementation of circular economy strategies in manufacturing processes to mitigate future Dy supply uncertainties in the European Union.
References
Dai, T., Liu, Y. F., Wang, P., Qiu, Y., Mancheri, N., Chen, W., Liu, J. X., Chen, W. Q., Wang, H. & Wang, A. J. (2023). Unlocking Dysprosium Constraints for China's 1.5 degrees C Climate Target. Environmental Science & Technology, 57, 14113-14126. https://doi.org/10.1021/acs.est.3c01327
Eheliyagoda, D., Ramanujan, D., Veluri, B., Liu, Q. & Liu, G. (2023). Tracing the multiregional evolution of the global dysprosium demand-supply chain. Resources, Conservation and Recycling, 199, 107245. https://doi.org/10.1016/j.resconrec.2023.107245
European Commission (2023). Supply chain analysis and material demand forecast in strategic technologies and sectors in the EU - a foresight study. https://data.europa.eu/doi/10.2760/386650
Liu, Q., Sun, K., Ouyang, X., Sen, B., Liu, L., Dai, T. & Liu, G. (2022). Tracking Three Decades of Global Neodymium Stocks and Flows with a Trade-Linked Multiregional Material Flow Analysis. Environmental Science & Technology, 56, 11807-11817. https://doi.org/10.1021/acs.est.2c02247
Rasmussen, K. D., Wenzel, H., Bangs, C., Petavratzi, E. & Liu, G. (2019). Platinum demand and potential bottlenecks in the global green transition: a dynamic material flow analysis. Environmental Science & Technology, 53, 11541-11551. https://doi.org/10.1021/acs. est.9b01912
Rizos, V., Righetti, E. & Kassab, A. (2024). Understanding the barriers to recycling critical raw materials for the energy transition: The case of rare earth permanent magnets. Energy Reports, 12, 1673-1682. http://doi.org/10.1016/j.egyr.2024.07.022
Seo, Y. & Morimoto, S. (2014). Comparison of dysprosium security strategies in Japan for 2010-2030. Resources Policy, 39, 15-20. https://doi.org/10.1016/j.resourpol.2013.10.007
Sepehri-Amin, H., Hirosawa, S. & Hono, K. (2018). Chapter 4 - Advances in Nd-Fe-B Based Permanent Magnets. Handbook of magnetic Materials, 27, 269-372. https://doi.org/10.1016/bs.hmm.2018.08.003
Wang, P., Yang, Y. -Y., Heidrich, O., Chen, L. -Y., Chen, L. -H., Fishman, T. & Chen, W. -Q., (2024). Regional rare-earth element supply and demand balanced with circular economy strategies. Nature Geoscience, 17, 94-102. https://doi.org/10.1038/s41561-023-01350-9
Wang, Q. -C., Chen, W. -Q., Wang, P. & Dai, T. (2022). Illustrating the supply chain of dysprosium in China through material flow analysis. Resources, Conservation and Recycling, 184, 106417. https://doi.org/10.1016/j.resconrec.2022.106417
Xiao, S., Geng, Y., Pan, H., Gao, Z. & Yao, T. (2022). Uncovering the key features of dysprosium flows and stocks in China. Environmental Science & Technology, 56, 8682-8690. https://doi.org/10.1021/acs.est.1c07724