Learning by Transforming
Widening Access to Complex Circular Economy Science using Experimental Design
DOI:
https://doi.org/10.54337/plate2025-10353Keywords:
Materialisation, Visualisation, Experimental design-science education, Biobased recycling processes, Textiles circularityAbstract
This paper presents a pilot pedagogical project exploring the potential of experimental design methods to engage students with complex scientific concepts, by focusing on translating these concepts specifically for a public audience. Conducted within the UKRI-funded Textiles Circularity Centre (TCC) at the Royal College of Art, the project tasked design students with designing an experience that can communicate the science of biobased textile recycling, an emerging circular economy process that is complex and typically inaccessible for laypeople. Framed as a process of translation rather than mastery, the project integrated interdisciplinary, multisensory, and speculative design and teaching methods to engage with a range of ways of conceptualizing and communicating complex science to a diverse audience. Students worked closely with scientific researchers, engaging with scientific materials and techniques, including enzymatic recycling and bacterial cellulose production. Through iterative development, the students produced Catalyst, a multisensory installation that employs tactile interaction, visual displays, and soundscapes to create an interactive material simulation of biobased recycling. The study identifies three key pedagogical outcomes with potential for application in wider contexts: enhanced technical comprehension, emotional engagement, and learner agency. We discuss the relationship of multimodal design methods to whole-systems thinking and learning. We propose that interdisciplinary, multisensory methods for enhancing complexity-oriented learning and public engagement, and raise possibilities to scale the model to other contexts that involve communication of complex information, as it may be able to activate new forms of learning and public engagement.
References
Angel, J., LaValle, A., Iype, D. M., Sheppard, S. & Dulic, A. (2015). Future Delta 2.0an Experiential Learning Context for a Serious Game about Local Climate Change,. SIGGRAPH Asia 2015 Symposium on Education, 1–10. doi:10.1145/2818498.2818512.
Braga, L. D., Tardin, M. G., Perin, M. G., & Boaventura, P. (2024). Sustainability communication in marketing: a literature review. RAUSP Management Journal, 59(3), 293-311.
Chirico, A., Yaden, D. B., Riva, G. & Gaggioli, A. (2016). The Potential of Virtual Reality for the Investigation of Awe. Frontiers in Psychology 7: 1766. https://doi.org/10.3389/fpsyg.2016.01766
Comstock, M., & Hocks, M. E. (2016). The Sounds of Climate Change: Sonic Rhetoric in the Anthropocene, the Age of Human Impact. Rhetoric Review, 2(35), 165–175. https://doi.org/10.1080/07350198.2016.1142854
Curtis, S. & Lue, R., (2015). Bridging Science, Art, and the History of Visualization: A Dialogue between Scott Curtis and Robert Lue. Discourse, 37(3) 193-206. https://doi.org/10.13110/discourse.37.3.0193
Doganca Kucuk, Z. &Saysel. A. K. (2018). Developing Seventh Grade Students’ Understanding of Complex Environmental Problems with Systems Tools and Representations: A Quasi-Experimental Study. Research in Science Education, 48(2), 491–514. doi:10.1007/s11165-017-9620-8.
Harley, J. M., Poitras, E. G., Jarrell, A., Duffy, M. C., & Lajoie, S. P., (2016). Comparing virtual and location-based augmented reality mobile learning: emotions and learning outcomes. Educational Technology Research and Development, 64(3), 359-388. https://doi.org/10.1007/s11423-015-9420-7
Hayes, L., & Stein, J. (2018). Desert and sonic ecosystems: Incorporating environmental factors within site-responsive sonic art. Applied Sciences, 8(1), 111. https://doi.org/10.3390/app8010111
Jandrić, P., & Ford, D. R. (2022). Postdigital ecopedagogies: Genealogies, contradictions, and possible futures. In Postdigital ecopedagogies: Genealogies, contradictions, and possible futures (pp. 3-23). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-97262-2_1
Jewitt, C., Golmohammadi, L., Petreca, B., O’Nascimento, R., Berthouze, N., Fotopoulou, A., & Baurley, S. Interrogating wellbeing and alternative circular consumer experiences. (under review).
Jowsey, S., & C. Aguayo, C. (2017). O-Tū-Kapua (“What Clouds See”): A Mixed Reality Experience Bridging Art, Science, Technology in Meaningful Ways. Teachers and Curriculum, 17(2). doi:10.15663/tandc.v17i2.166.
Kääriäinen, P., Tervinen, L., Vuorinen, T., & Riutta, N. eds. (2020). The CHEMARTS Cookbook. Aalto University. https://shop.aalto.fi/media/filer_public/3b/bf/3bbf53d7-347a-4ca4-a6b1-2479cfde39c2/aaltoartsbooks_thechemartscookbook.pdf
Kataya, K. & Kääriäinen, P., eds. (2018). Designing Cellulose for the Future: Design-Driven Value Chains in the World of Cellulose (Dwoc 2013-2018). https://cellulosefromfinland.fi/wp-content/uploads/2018/09/DWoC_Loppuraportti_FINAL_s%C3%A4hk%C3%B6inen.pdf
Klerkx, J., Verbert, K., & Duval, E. (2014). Enhancing learning with visualization techniques. Handbook of research on educational communications and technology, 791-807. https://doi.org/10.1007/978-1-4614-3185-5_64
Kamenarac, O. (2024). Postdigital Thinking. In Encyclopedia of Postdigital Science and Education (pp. 1-8). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-35469-4_69-1
Lanot, A., Tiwari, S., Purnell, P., Omar, A. M., Ribul, M., Upton, D. J., Eastmond, H., Badruddin, I. J., Walker, H. F., Gatenby, A., Baurley, S., Bartolo, P. J.D.S., Rahatekar, S. S., Bruce, N. C., & McQueen-Mason, S. J. (2024). Demonstrating a biobased concept for the production of sustainable bacterial cellulose from mixed textile, agricultural and municipal wastes. Journal of Cleaner Production, 486(144418). doi:10.1016/j.jclepro.2024.144418
Lau, K. W., & Lee, P. Y. (2015). The Use of Virtual Reality for Creating Unusual Environmental Stimulation to Motivate Students to Explore Creative Ideas. Interactive Learning Environments, 23(1), 3–18. doi:10.1080/10494820.2012.745426.
Maffei, L., Masullo, M., Pascale, A., Ruggiero, G., & Romero, V. P. (2016). Immersive virtual reality in community planning: Acoustic and visual congruence of simulated vs real world. Sustainable Cities and Society, 27, 338-345. https://doi.org/10.1016/j.scs.2016.06.022
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A. et al. (2015). Human-Level Control through Deep Reinforcement Learning. Nature, 518(7540), 529–533. doi:10.1038/nature14236.
Niinimäki, K., Groth, C. & Kääriäinen, P. (2018). NEW SILK: Studying Experimental Touchpoints between Material Science, Synthetic Biology, Design and Art. Temes de Disseny, 34, 34–43. doi:10.46467/TdD34.2018.34-43.
O’Keefe, L., McLachlan, C., Gough, C., Mander, S. & Bows-Larkin, A. (2016). Consumer Responses to a Future UK Food System. British Food Journal 118 (2), 412–428. https://doi.org/10.1108/BFJ-01-2015-0047
Ouhaichi, H., Bahtijar, V., & Spikol, D. (2024, July). Exploring design considerations for multimodal learning analytics systems: an interview study. In Frontiers in Education (Vol. 9, p. 1356537). Frontiers Media SA.
Peck, J., & Childers, T. L. (2003). To Have and to Hold: The Influence of Haptic Information on Product Judgments. Journal of Marketing, 67(2), 35–48. doi:10.1509/jmkg.67.2.35.18612
Ribul, M., Lanot, A., Tommencioni Pisapia, C., Purnell, P., McQueen-Mason, S. J. & Baurley, S. (2021). Mechanical, chemical, biological: Moving towards closed-loop bio-based recycling in a circular economy of sustainable textiles. Journal of Cleaner Production, 326(129325). https://doi.org/10.1016/j.jclepro.2021.129325
Ribul, M., & de la Motte, H. (2018). Material Translation: Validation and Visualization as Transdisciplinary Methods for Textile Design and Materials Science in the Circular Bioeconomy. Journal of Textile Design Research and Practice (RFTD), 6(1), 66-88. https://doi.org/10.1080/20511787.2018.1467206
Verburg, P. H., Dearing, J. A. , Dyke, J. G., van der Leeuw, S., Seitzinger, S., Steffen, W. & Syvitski, J.. (2016). Methods and Approaches to Modelling the Anthropocene. Global Environmental Change, 39, 328–340. doi:10.1016/j.gloenvcha.2015.08.007.
Wouters, P., Van Nimwegen, C., van Oostendorp, H. & van Der Spek, E. D. (2013). A Meta-Analysis of the Cognitive and Motivational Effects of Serious Games. Journal of Educational Psychology, 105(2). 249-265. https://doi.org/10.1037/a0031311
Yazdanparast, A., & Spears, N. (2012). Need for Touch and Information Processing Strategies: An Empirical Examination. Journal of Consumer Behaviour 11(5), 415–421. https://doi.org/10.1002/cb.1393