Impact of Robotic Circular Wood Processing
Lessons from the “One Plank” Challenge – using the AUAS Circular Wood KPI Framework
DOI:
https://doi.org/10.54337/plate2025-10434Keywords:
Upcycling, Wood, Digital design, Robotic production, ImpactAbstract
Wood is an increasingly demanded renewable resource and an important raw material for construction and materials. Demands are rising, with a growing attention for re-use and upcycling, opening up opportunities for new business models, empowered by the use of digital design and technologies. A KPI framework was developed to evaluate the environmental, social, and economic aspects of using recycled wood in robotic manufacturing. This paper explores the use of this framework, focusing on a case study: the "One Plank" Challenge. The study reveals that environmental gains from using waste wood are comparable to production burdens, with significant variation depending on wood type. Production time, encompassing both human and robotic aspects, significantly impacts cost-effectiveness. The findings underscore the importance of considering lifecycle impacts in promoting sustainable robotic manufacturing practices.
References
Besserer, A., Troilo, S., Girods, P., Rogaume, Y., & Brosse, N. (2021). Cascading Recycling of Wood Waste: A Review. In Polymers (Vol. 13, Issue 11). https://doi.org/10.3390/polym13111752
Brunner, P. H., & Rechberger, H. (2016). Handbook of Material Flow Analysis : For Environmental, Resource, and Waste Engineers, Second Edition. https://doi.org/10.1201/9781315313450
Gohar, L. K., & Shine, K. P. (2007). Equivalent CO2 and its use in understanding the climate effects of increased greenhouse gas concentrations. Weather, 62(11), 307–311. https://doi.org/https://doi.org/10.1002/wea.103
Jonsson, R., Blujdea, V. N., Fiorese, G., Pilli, R., Rinaldi, F., Baranzelli, C., & Camia, A. (2018). Outlook of the European forest-based sector: forest growth, harvest demand, wood-product markets, and forest carbon dynamics implications. IForest - Biogeosciences and Forestry, 11(2), 315–328. http://www.sisef.it/iforest/contents/?id=ifor2636-011
Lüdeke‐Freund, F., Gold, S., & Bocken, N. M. P. (2019). A review and typology of circular economy business model patterns. Journal of Industrial Ecology, 23(1), 36–61. DOI: 10.1111/jiec.12763
Malé-Alemany, M., Schoen, T., Galli, M., Bors, V., Kozhevnikova, A., & Dijk, L. Van. (2022). “ Once my front door – now my coffee table ”; Advanced computational design and robotic production with waste wood. AMS Scientific Conference “Reinventing the City” (Available Online).
Schoen, T., Malé-Alemany, M., Mulder, M., & Schouten, N. (2023). The Circular Wood KPI-framework. New Business Models Conference Proceedings. https://doi.org/10.26481/mup.2302.41
Szulecka, J. (2019). Towards Sustainable Wood-Based Energy: Evaluation and Strategies for Mainstreaming Sustainability in the Sector. In Sustainability (Vol. 11, Issue 2). https://doi.org/10.3390/su11020493
Tao, F., Zhang, H., Liu, A., & Nee, A. Y. C. (2019). Digital Twin in Industry: State-of-the-Art. IEEE Transactions on Industrial Informatics, 15(4), 2405–2415. https://doi.org/10.1109/TII.2018.2873186
van Bruggen, R., & van der Zwaag, N. (2017). Knelpuntenanalyse houtrecycling. Tauw.
van Vliet, M., van Grinsven, J., & Teunizen, J. (2021). Circular Buildings – een meetmethodiek voor losmaakbaarheid, versie 2.0.
Vogtländer, J. (2014). LCA - a practical guide for students, designers and business managers. Delft Academic Press.
Vogtländer, J. G., Bijma, A., & Brezet, H. C. (2002). Communicating the eco-efficiency of products and services by means of the eco-costs/value model. Journal of Cleaner Production, 10(1), 57–67. https://doi.org/https://doi.org/10.1016/S0959-6526(01)00013-0
Vrutaal, C., Aardenburg, S., Bugdayci, S., & Koller, S. (2024). From waste wood to innovation: an analysis of the feasibility and future potential of the CW4.0 Stool as a Business Case.
Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., & Weidema, B. (2016). The ecoinvent database version 3 (part I): overview and methodology. The International Journal of Life Cycle Assessment, 21, 1218–1230. DOI: 10.1007/s11367-016-1087-8