Impact of Robotic Circular Wood Processing

Lessons from the “One Plank” Challenge – using the AUAS Circular Wood KPI Framework

Authors

  • Tony Schoen Amsterdam University of Applied Sciences, the Netherlands
  • Simon Griffioen Amsterdam University of Applied Sciences, the Netherlands
  • Marta Malé-Alemany Amsterdam University of Applied Sciences, the Netherlands
  • Manuel Rodrigues HMC Hout en Meubileringscollege Amsterdam, the Netherlands
  • Mirjam Kiestra Stayokay Hostels, the Netherlands

DOI:

https://doi.org/10.54337/plate2025-10434

Keywords:

Upcycling, Wood, Digital design, Robotic production, Impact

Abstract

Wood is an increasingly demanded renewable resource and an important raw material for construction and materials. Demands are rising, with a growing attention for re-use and upcycling, opening up opportunities for new business models, empowered by the use of digital design and technologies. A KPI framework was developed to evaluate the environmental, social, and economic aspects of using recycled wood in robotic manufacturing. This paper explores the use of this framework, focusing on a case study: the "One Plank" Challenge.  The study reveals that environmental gains from using waste wood are comparable to production burdens, with significant variation depending on wood type. Production time, encompassing both human and robotic aspects, significantly impacts cost-effectiveness. The findings underscore the importance of considering lifecycle impacts in promoting sustainable robotic manufacturing practices.

References

Besserer, A., Troilo, S., Girods, P., Rogaume, Y., & Brosse, N. (2021). Cascading Recycling of Wood Waste: A Review. In Polymers (Vol. 13, Issue 11). https://doi.org/10.3390/polym13111752

Brunner, P. H., & Rechberger, H. (2016). Handbook of Material Flow Analysis : For Environmental, Resource, and Waste Engineers, Second Edition. https://doi.org/10.1201/9781315313450

Gohar, L. K., & Shine, K. P. (2007). Equivalent CO2 and its use in understanding the climate effects of increased greenhouse gas concentrations. Weather, 62(11), 307–311. https://doi.org/https://doi.org/10.1002/wea.103

Jonsson, R., Blujdea, V. N., Fiorese, G., Pilli, R., Rinaldi, F., Baranzelli, C., & Camia, A. (2018). Outlook of the European forest-based sector: forest growth, harvest demand, wood-product markets, and forest carbon dynamics implications. IForest - Biogeosciences and Forestry, 11(2), 315–328. http://www.sisef.it/iforest/contents/?id=ifor2636-011

Lüdeke‐Freund, F., Gold, S., & Bocken, N. M. P. (2019). A review and typology of circular economy business model patterns. Journal of Industrial Ecology, 23(1), 36–61. DOI: 10.1111/jiec.12763

Malé-Alemany, M., Schoen, T., Galli, M., Bors, V., Kozhevnikova, A., & Dijk, L. Van. (2022). “ Once my front door – now my coffee table ”; Advanced computational design and robotic production with waste wood. AMS Scientific Conference “Reinventing the City” (Available Online).

Schoen, T., Malé-Alemany, M., Mulder, M., & Schouten, N. (2023). The Circular Wood KPI-framework. New Business Models Conference Proceedings. https://doi.org/10.26481/mup.2302.41

Szulecka, J. (2019). Towards Sustainable Wood-Based Energy: Evaluation and Strategies for Mainstreaming Sustainability in the Sector. In Sustainability (Vol. 11, Issue 2). https://doi.org/10.3390/su11020493

Tao, F., Zhang, H., Liu, A., & Nee, A. Y. C. (2019). Digital Twin in Industry: State-of-the-Art. IEEE Transactions on Industrial Informatics, 15(4), 2405–2415. https://doi.org/10.1109/TII.2018.2873186

van Bruggen, R., & van der Zwaag, N. (2017). Knelpuntenanalyse houtrecycling. Tauw.

van Vliet, M., van Grinsven, J., & Teunizen, J. (2021). Circular Buildings – een meetmethodiek voor losmaakbaarheid, versie 2.0.

Vogtländer, J. (2014). LCA - a practical guide for students, designers and business managers. Delft Academic Press.

Vogtländer, J. G., Bijma, A., & Brezet, H. C. (2002). Communicating the eco-efficiency of products and services by means of the eco-costs/value model. Journal of Cleaner Production, 10(1), 57–67. https://doi.org/https://doi.org/10.1016/S0959-6526(01)00013-0

Vrutaal, C., Aardenburg, S., Bugdayci, S., & Koller, S. (2024). From waste wood to innovation: an analysis of the feasibility and future potential of the CW4.0 Stool as a Business Case.

Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., & Weidema, B. (2016). The ecoinvent database version 3 (part I): overview and methodology. The International Journal of Life Cycle Assessment, 21, 1218–1230. DOI: 10.1007/s11367-016-1087-8

Downloads

Published

24-06-2025

How to Cite

Schoen, T., Griffioen, S., Malé-Alemany, M., Rodrigues, M., & Kiestra, M. (2025). Impact of Robotic Circular Wood Processing: Lessons from the “One Plank” Challenge – using the AUAS Circular Wood KPI Framework. Proceedings of the 6th Product Lifetimes and the Environment Conference (PLATE2025), (6). https://doi.org/10.54337/plate2025-10434

Issue

Section

Track 9: Education, Tools, and Games – Research Papers