Vol. 5 No. 1 (2023): The History and Philosophy of Tense-logic
Articles

On A.N. Prior’s Logical System Q

Farshad Badie
Berlin School of Business & Innovation

Published 23-10-2023

Keywords

  • A.N. Prior,
  • System Q,
  • tense-logic

How to Cite

Badie, F. (2023). On A.N. Prior’s Logical System Q. Logic and Philosophy of Time, 5(1). https://doi.org/10.54337/lpt.v5i1.7853

Abstract

Through his philosophical and logical analysis in Time and Modality in 1957, Arthur Norman Prior proposed the logical system Q. In this paper, I logically characterise Q and, subsequently, study Q’s deficiencies. I also review other works which have been carried out based on Q in recent decades.

References

  1. Akama, S., Murai, T., Kudo, Y. (2016). Partial and paraconsistent approaches to future contingents in tense logic. Synthese 193 (11), 3639-3649.
  2. https://doi.org/10.1007/s11229-015-0905-z
  3. Akama, S., Nagata, Y. (2005). On Prior's three-valued modal logic Q. In: 35th International Symposium on Multiple-Valued Logic (ISMVL'05), pp. 14-19,
  4. https://doi.org/10.1109/ISMVL.2005.33
  5. Akama, S., Nagata, Y. (2007). Prior's three-valued modal logic Q and its possible applications. Journal of Advanced Computational Intelligence and Intelligent Informatics 11(1), 105-110, https://doi.org/10.20965/jaciii.2007.p0105
  6. Akama, S., Nagata, Y. (2011). A three-valued approach to the master argument. In: 41st IEEE International Symposium on Multiple-Valued Logic, pp. 44-49, https://doi.org/10.1109/ISMVL.2011.8
  7. Akama, S., Nagata, Y., Yamada, C. (2008). Three-valued temporal logic Qt and future contingents. Stud Logica 88(2), 215-231 (2008)
  8. https://doi.org/10.1007/s11225-008-9102-0
  9. Bull, R.A. (1964). An axiomatization of Prior's modal calculus Q. Notre Dame J. Formal Logic 5(3), 211-214 (1964), https://doi.org/10.1305/ndjfl/1093957880
  10. Copeland, B.J. (2020). Arthur Prior. The Stanford Encyclopedia of Philosophy.
  11. Correia, F. (2001). Priorean strict implication, Q and related systems. Studia Logica: An International Journal for Symbolic Logic 69(3), 411-427.
  12. https://doi.org/10.1023/A:1013844211100
  13. Fine, K. (2005). Prior on the construction of possible worlds and instants. In: Modality and Tense: Philosophical Papers. Oxford University Press, https://doi.org/10.1093/0199278709.003.0005
  14. Hughes, G.E. and M. Cresswell (1968). An Introduction to Modal Logic, London: Methuen.
  15. Hughes, G.E., Cresswell, M.J. (1996). A New Introduction to Modal Logic. Routledge
  16. https://doi.org/10.4324/9780203290644
  17. Kripke, S.A. (1966). Semantical analysis of modal logic I. Normal modal propositional calculi. Journal of Symbolic Logic 31(1), 120-122, https://doi.org/10.2307/2270649
  18. Lemmon, E.J. (1956). Alternative postulate sets for Lewis's S5. J. Symb. Log. 21(4), 347- 349
  19. https://doi.org/10.2307/2268355
  20. Łukasiewicz, J. (1953). A system of modal logic. Proceedings of the XIth International Congress of Philosophy 14, 82-87
  21. https://doi.org/10.5840/wcp11195314451
  22. Øhrstrøm, P., Hasle, P. (2020). Future contingents. The Stanford Encyclopedia of Philosophy.
  23. Prior, A. (1957). The System Q, Ch. V in [17].
  24. Prior, A. (1957). Time and Modality. Oxford University Press
  25. Prior, A. (1959). Notes on a group of new modal systems. Logique et Analyse 2(6/7), 122-127, http://www.jstor.org/stable/44083457
  26. Prior, A. (1964). Axiomatisation of the modal calculus Q. Notre Dame J. Formal Logic (3), 215-217. https://doi.org/10.1305/ndjfl/1093957881
  27. Ruzsa, I. (1973). Prior-type modal logic I. Periodica Mathematica Hungarica 4, 51-69.
  28. https://doi.org/10.1007/BF02018037
  29. Timothy, S. (1961). On Łukasiewicz's -modal system. Notre Dame Journal of Formal Logic 2(3), 149-153 (1961), https://doi.org/10.1305/ndjfl/1093956874