Scenario-Based Framework for National Energy Storage Integration in Decarbonization Pathways
Main Article Content
Abstract
The integration of large-scale energy storage is pivotal for enabling re-
liable, affordable, and decarbonized national power systems. This study
introduces a scenario-based strategic planning framework to guide the de-
ployment of storage under varying policy and technological futures. Four
national-scale scenarios are examined to explore how different planning
approaches affect emissions, cost, and grid stability. The results show
that strategic early investment in storage—as modeled in Scenario A—can
lead to a 50% storage penetration rate by 2050, avoid 220 million metric
tons of carbon dioxide emissions, and reduce the Levelized Cost of Energy
from 112 to 76 USD per megawatt-hour. Scenario A also demonstrates the
most cost-effective reliability enhancement, achieving a cost per avoided
blackout hour of 105,263 USD. In contrast, Scenario D, which assumes
policy inaction, results in only 20 gigawatts of installed storage capacity
by 2050, an 18% reduction in renewable energy curtailment, and a per-
sistently high Levelized Cost of Energy of 118 USD per megawatt-hour.
These findings underscore the critical role of storage in supporting na-
tional decarbonization and highlight the need for coordinated planning.
The proposed framework serves as a practical decision-support tool for
aligning storage investments with long-term energy and climate goals.
Article Details
Articles published in International Journal of Sustainable Energy Planning and Management are following the license Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0)
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License: Attribution - NonCommercial - NoDerivs (by-nc-nd). Further information about Creative Commons
Authors can archive post-print (final draft post-refereering) on personal websites or institutional repositories under these conditions:
- Publishers version cannot be stored elsewhere but on publishers homepage
- Published source must be acknowledged
- Must link to publisher version
References
[1] U.S. Department of Energy, Grid Energy Storage. Washington, DC: U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability; 2013. Available at: https://www.energy.gov/oe/downloads/ grid-energy-storage-december-2013
[2] J. Lazar, W. Gonzalez, State-Level Energy Storage Policy Overview. Montpelier (VT): Regulatory Assistance Project; 2020.
Available at: https://www.raponline.org/knowledge-center/ state-level-energy-storage-policy-overview/
[3] D. Connolly, B.V. Mathiesen, I. Ridjan, A technical and economic analysis of one potential pathway to a 100% renewable energy system. Int. J. Sustain. Energy Plan. Manag. 1 (2014) 7–28. https://doi.org/10.5278/ ijsepm.2014.1.2
[4] P.A. Østergaard, Reviewing EnergyPLAN simulations and their applications in energy planning. Int. J. Sustain. Energy Plan. Manag. 2 (2014) 45–56. https://doi.org/10.5278/ijsepm.2014.2.5
[5] H. Lund, A.N. Andersen, P.A. Østergaard, B.V. Mathiesen, D. Connolly, From electricity smart grids to smart energy systems – a market operation based approach. Int. J. Sustain. Energy Plan. Manag. 5 (2015) 5–14. https://doi.org/10.5278/ijsepm.2015.5.2
[6] M. Mu¨nster, H. Lund, B.V. Mathiesen, M. M¨oller, Integrated energy systems planning: Technologies, modelling and policy. Int. J. Sustain. Energy Plan. Manag. 4 (2014) 31–44. https://doi.org/10.5278/ijsepm.2014. 4.3
[7] D. Connolly, H. Lund, B.V. Mathiesen, Smart energy scenarios for 100% renewable systems. Int. J. Sustain. Energy Plan. Manag. 3 (2014) 1–16. https://doi.org/10.5278/ijsepm.2014.3.1
[8] S. Sterner, I. Stadler, Towards a Sustainable Energy System: The Role of Renewable Energy, Storage and Sector Coupling. Cham: Springer Nature; 2019. ISBN 978-3-030-14588-2. https://doi.org/10.1007/ 978-3-030-14588-2
[9] W.-P. Schill, M. Zerrahn, F. Kunz, Impacts of energy storage on power markets – a review. Energy Econ. 93 (2021) 104655. https://doi.org/
10.1016/j.eneco.2020.104655
[10] National Grid, Massachusetts Electric Sector Modernization and Future Grid Plan. Waltham (MA): National Grid USA; 2023. Available at: https:
//www.nationalgridus.com/
[11] National Renewable Energy Laboratory (NREL), Storage Futures Study: Energy Storage in the U.S. Power System. Golden (CO): NREL; 2021. NREL/TP-6A20-77480. Available: https://www.nrel.gov/analysis/ storage-futures.html
[12] U.S. Government Accountability Office (GAO), Electricity Grid: Energy Storage Technologies and Challenges. GAO-23-105583. Washington, DC:
GAO; 2023. Available: https://www.gao.gov/products/gao-23-105583
[13] International Energy Agency (IEA), Energy Storage: Tracking Report. Paris: IEA; 2021. Available: https://www.iea.org/reports/ energy-storage
[14] International Energy Agency (IEA), Net Zero by 2050: A Roadmap for the Global Energy Sector. Paris: IEA; 2021. Available: https://www.iea. org/reports/net-zero-by-2050
[15] S.R. Sinsel, R.L. Riemke, V.H. Hoffmann, “Challenges and solution technologies for the integration of variable renewable energy sources—a review.” Renewable Energy 145 (2020) 2271–2285. https://doi.org/10.1016/j.renene.2019.06.147
[16] M. Safdarnejad, A. Mehrizi-Sani, “Large-scale energy storage technologies for integrating renewable energy sources: Current status and future prospects.” Energy Strategy Rev. 55 (2024) 101057. https://doi.org/10.1016/j.esr.2023.101057
[17] A.N. Abdalla, M.S. Nazir, H. Tao, S. Cao, R. Ji, M. Jiang, L. Yao, “Integration of energy storage system and renewable energy sources based on artificial intelligence: An overview.” J. Energy Storage 40 (2021) 102811. https://doi.org/10.1016/j.est.2021.102811
[18] López Pról, J. & Schill, W.-P. (2021). The economics of variable renewable energy and electricity storage. Annual Review of Resource Economics, 13, 443-467. https://doi.org/10.1146/annurev-resource-101620-081246
[19] M. Hassan, “Integrated smart risk management for Siwa solar energy systems: A case study and strategies.” Sci. Rep. 14 (2024) 12587. https://doi.org/10.1109/TSTE.2023.3261614
[20] Ahsan, S. M., and Musilek, P. Optimizing Multi-Microgrid Operations with Battery Energy Storage and Electric Vehicle Integration: A Comparative Analysis of Strategies. Batteries, 11 (4) (2025) 129. https://doi.org/10.3390/batteries11040129
[21] M. Hassan, “Symmetric nonlinear feedback control and machine learning for sustainable spherical motor operation.” Symmetry 15 (9) (2023) 1721. https://doi.org/10.3390/sym15091721
[22] P.D. Lund, J. Lindgren, J. Mikkola, J. Salpakari, “Review of energy system flexibility measures to enable high levels of variable renewable electricity.” Renew. Sustain. Energy Rev. 45 (2015) 785–807. https://doi.org/10.1016/j.rser.2015.01.057.
[23] M.I. Alizadeh, M. Parsa Moghaddam, N. Amjady, P. Siano, M.K. Sheikh-El-Eslami, “Flexibility in future power systems with high renewable penetration: A review.” Renew. Sustain. Energy Rev. 57 (2016) 1186–1193. https://doi.org/10.1016/j.rser.2015.12.200
[24] J. Haas, F. Cebulla, K. Cao, W. Nowak, R. Palma-Behnke, C. Rahmann, P. Mancarella, “Challenges and trends of energy storage expansion planning for flexibility provision in low-carbon power systems – a review.” Renew. Sustain. Energy Rev. 80 (2017) 603–619. https://doi.org/10.1016/j.rser.2017.05.201
[25] Å.G. Tveten, T.F. Bolkesjø, I. Ilieva, “Increased demand-side flexibility: Market effects and impacts on variable renewable energy integration.” Int. J. Sustain. Energy Plan. Manag. 11 (2016) 33–50. https://doi.org/10.5278/ijsepm.2016.11.4
[26] J. Tariq, “Energy management using storage to facilitate high shares of variable renewable energy.” Int. J. Sustain. Energy Plan. Manag. 25 (2020) 61–76. https://doi.org/10.5278/ijsepm.3453
[27] R. Lund, “Energy system benefits of combined electricity and thermal storage integrated with district heating.” Int. J. Sustain. Energy Plan. Manag. 31 (2021) 23–38. https://doi.org/10.5278/ijsepm.6273
[28] J. R¨oder, B. Meyer, U. Krien, J. Zimmermann, T. Stu¨hrmann, E. Zondervan, “Optimal design of district heating networks with distributed thermal energy storages.” Int. J. Sustain. Energy Plan. Manag. 31 (2021) 5–22. https://doi.org/10.5278/ijsepm.6248
[29] R.A. Waraich, M. Galus, M. Balmer, K. Axhausen, G. Andersson, Plugin hybrid electric vehicles and smart grids: Investigations based on a microsimulation. Transp. Res. Part C Emerg. Technol. 28 (2013) 74–86. https://doi.org/10.1016/j.trc.2012.10.011
[30] B.K. Sovacool, J. Axsen, S. Kempton, The future promise of vehicleto-grid (V2G) integration: A sociotechnical review and research agenda. Annu. Rev. Environ. Resour. 42 (2017) 377–406. https://doi.org/10. 1146/annurev-environ-102016-060044
[31] O. Schmidt, A. Hawkes, A. Gambhir, I. Staffell, Projecting the future levelized cost of electricity storage technologies. Joule 3 (1) (2019) 81–100. https://doi.org/10.1016/j.joule.2018.12.008
[32] UK Department for Transport, Vehicle Licensing Statistics: Quarter 4 (October–December) 2023. London: Department for Transport; 2024. Available at: https://www.gov.uk/government/statistics/ vehicle-licensing-statistics-october-to-december-2023
[33] National Grid ESO, Net Zero Market Reform: Analysis and Key Insights. Warwick (UK): National Grid ESO; 2021. Available at: https://www. nationalgrideso.com/document/220306/download
[34] National Grid ESO, Future Energy Scenarios 2022. Warwick (UK): National Grid ESO; 2022. Available at: https://www.nationalgrideso.
com/future-energy/future-energy-scenarios
[35] U.S. Department of Energy, Pathways to Commercial Liftoff: Long-Duration Energy Storage. Washington, DC: U.S. Department of Energy; 2023. Available at: https://liftoff.energy.gov/ long-duration-energy-storage/
[36] H. Lund, P.A. Østergaard, D. Connolly, B.V. Mathiesen, B. M¨oller, et al., EnergyPLAN – Advanced analysis of smart energy systems. Smart Energy 1 (2021) 100007. https://doi.org/10.1016/j.segy.2021.100007
[37] H. Lund, P.A. Østergaard, D. Connolly, B.V. Mathiesen, Smart energy and smart energy systems. Energy 137 (2017) 556–565. https://doi.org/10. 1016/j.energy.2017.03.123
[38] B.V. Mathiesen, H. Lund, D. Connolly, M. Mu¨nster, P.A. Østergaard, Energy storage and smart energy systems. Int. J. Sustain. Energy Plan. Manag. 11 (2016) 3–14. https://doi.org/10.5278/ijsepm.2016.11.2
[39] H. Lund, B.V. Mathiesen, P.A. Østergaard, D. Connolly, M. Mu¨nster, Energy balancing and storage in climate-neutral smart energy systems. Renew. Sust. Energy Rev. 209 (2025) 114142. https://doi.org/10.1016/j.rser. 2025.114142
[40] H. Lund, B.V. Mathiesen, P.A. Østergaard, D. Connolly, Smart Energy Denmark: A consistent and detailed strategy for a fully decarbonized society. Renew. Sust. Energy Rev. 157 (2022) 112006. https://doi.org/10. 1016/j.rser.2021.112006
[41] M. Victoria, K. Zhu, T. Brown, G.B. Andresen, M. Greiner, Early decarbonisation of the European energy system pays off. Nat. Commun. 11
(2020) 6223. https://doi.org/10.1038/s41467-020-20015-4
[42] W. Wei, Y. Zhang, H. Chen, Y. Xu, S. Mei, Optimal planning of largescale energy storage under renewable integration: Market and policy perspectives. Energy Econ. 131 (2024) 107435. https://doi.org/10.1016/j. eneco.2023.107435
[43] A. Palombelli, F. Gardumi, M.V. Rocco, M. Howells, E. Colombo, Development of functionalities for improved storage modelling in OSeMOSYS. Energy 195 (2020) 117025. https://doi.org/10.1016/j.energy.2020.
117025
[44] A. Arteconi, N.J. Hewitt, F. Polonara, Domestic demand-side management: Role of heat pumps and thermal energy storage systems. Appl. Therm. Eng. 51 (1–2) (2013) 155–165. https://doi.org/10.1016/j.applthermaleng. 2012.09.045
[45] B.V. Mathiesen, H. Lund, K. Karlsson, 100% renewable energy systems, climate mitigation and economic growth. Appl. Energy 88 (2) (2011) 488–501. https://doi.org/10.1016/j.apenergy.2010.03.001
[46] S. Child, C. Kemfert, D. Bogdanov, C. Breyer, Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe. Renew. Energy 139 (2019) 80–101.
https: //doi.org/10.1016/j.renene.2019.01.024
