The development of Environmental Productivity: the Case of Danish Energy Plants
Main Article Content
Abstract
Abstract
The Danish “Klima 2020” plan sets an ambitious target for the complete phasing-out of fossil fuels by 2050. The Danish energy sector currently accounts for 40% of national CO 2 emissions. Based on an extended Farrell input distance function that accounts for CO 2 as an undesirable output, we estimate the environmental productivity of individual generator units based on a panel data set for the period 1998 to 2011 that includes virtually all fuel-fired generator units in Denmark. We further decompose total environmental energy conversion productivity into conversion efficiency, best conversion
practice ratio, and conversion scale efficiency and use a global Malmquist index to calculate the yearly changes. By applying time series clustering, we can identify high, middle, and low performance groups of generator units in a dynamic setting. Our results indicate that the sectoral productivity only slightly increased over the fourteen years. Furthermore, we find that there is no overall high achiever group, but that the ranking, although time consistent, varies between the different productivity measures. However, we identify steam turbines and combustion engines for combined heat and power production as potential high performers, while combustion engines that only
produce electricity are clearly low performers.
Article Details
Articles published in International Journal of Sustainable Energy Planning and Management are following the license Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0)
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License: Attribution - NonCommercial - NoDerivs (by-nc-nd). Further information about Creative Commons
Authors can archive post-print (final draft post-refereering) on personal websites or institutional repositories under these conditions:
- Publishers version cannot be stored elsewhere but on publishers homepage
- Published source must be acknowledged
- Must link to publisher version