Strategies Toward Energy Transition in Indonesia An Assessment of Multi-Regional Biomass Supply for Coal Co-Firing Power Plants

Main Article Content

Agus Sugiyono
https://orcid.org/0000-0002-6006-6066
Arief Heru Kuncoro
https://orcid.org/0000-0002-8761-6064
Ira Fitriana
https://orcid.org/0009-0005-0685-5231
Yudiartono
https://orcid.org/0000-0001-6348-7838
Prima Trie Wijaya
https://orcid.org/0009-0008-5937-2315
Rohmadi Ridlo
https://orcid.org/0009-0001-8942-2116
Aminuddin
https://orcid.org/0000-0001-9577-3601
Edi Wibowo
https://orcid.org/0009-0009-8388-2427
Edi Hilmawan
https://orcid.org/0000-0002-2846-3328
Agus Nurrohim
https://orcid.org/0000-0003-4029-8369

Abstract

Coal remains the dominant source of electricity generation in Indonesia, accounting for around 55% of installed capacity. As a fossil fuel, coal contributes significantly to greenhouse gas (GHG) emissions, posing a challenge to Indonesia’s commitment to the Paris Agreement. Biomass co-firing in coal power plants offers a promising pathway to reduce GHG emissions. However, sustainable biomass supply is a major challenge due to Indonesia’s archipelagic geography, which causes regional disparities in power capacity, fuel types, and biomass potential. This study assesses the potential of multi-regional biomass supply in relation to emission reduction targets, using secondary data for provincial biomass waste inventories is assessed. The Low Emissions Analysis Platform (LEAP) model projects coal demand from 2025 to 2045 under two scenarios: business as usual (BAU) and biomass co-firing (BCF) with biomass shares of 5%, 10%, and 15%. Findings show that municipal and industrial waste alone cannot sustain long-term co-firing at the national level. Therefore, multi-regional supply-demand analysis is essential. Provinces such as Riau, North Kalimantan, Central Kalimantan, West Kalimantan, Papua, Bangka Belitung Islands, and Jambi are identified as surplus regions. A 15% biomass co-firing scenario could reduce emissions by 108 Mt of CO₂ by 2045 and lower emission intensity nationwide.

Article Details

How to Cite
Sugiyono, A., Kuncoro, A. H., Fitriana, I., Yudiartono, Wijaya, P. T., Ridlo, R., … Nurrohim, A. (2025). Strategies Toward Energy Transition in Indonesia: An Assessment of Multi-Regional Biomass Supply for Coal Co-Firing Power Plants. International Journal of Sustainable Energy Planning and Management, 47, 43–56. https://doi.org/10.54337/ijsepm.10514
Section
Articles

References

[1] MEMR, Handbook of Energy & Economic Statistics of Indonesia 2023, Ministry of Energy and Mineral Resources, 2024, Jakarta

[2] Statista, Electricity consumption per capita worldwide in 2023, by selected country, www.statista.com, accessed 19-03-2025

[3] KESDM, Rencana Umum Ketenagalistrikan Nasional 2024 – 2034, Kementerian Energi dan Sumber Daya Mineral, 2024, Jakarta

[4] Ditjen Gatrik, Statistik Ketenagalistrikan 2023, Direktorat Jenderal Ketenagalistrikan, Kementerian ESDM, 2024, Jakarta

[5] GoI, Enhanced Nationally Determined Contribution Republic of Indonesia, Government of Indonesia, 2022

[6] M. Hernandez-Escalante and C. Martin-del-Campo, "A biomass waste evaluation for power energy generation in Mexico based on a SWOT & Fuzzy-logic analysis", International Journal of Sustainable Energy Planning and Management Vol. 35 2022 5–26, http://doi.org/10.54337/ijsepm.7073

[7] A. Sugiyono, I. Febijanto, E. Hilmawan, Adiarso, “Potential of Biomass and Coal Co-Firing Power Plants in Indonesia: A PESTEL Analysis”, IOP Conf. Series: Earth and Environmental Science 963, 012007, 2022, https://doi.org/10.1088/1755-1315/963/1/012007

[8] I.B. Novendianto, M.S.K.T.S. Utomo, M. Muchammad, F.M. Kuswa, H. Ghazidin, F. Karuana, P.A. Santoso, A. Prismantoko, N. Cahyo, K. Kusmiyati, H. Hariana, “Investigation of the slagging and fouling aspects of co-firing coal and organic refuse-derived fuel”, Thermal Science and Engineering Progress 49, 102447, 2024, https://doi.org/10.1016/j.tsep.2024.102447

[9] T. Hussain, A.U. Syed, N.J. Simms, “Fireside Corrosion of Superheater Materials in Coal/Biomass Co-fired Advanced Power Plants”, Oxid Met 80, 529–540, 2013, https://doi.org/10.1007/s11085-013-9394-y

[10] W. Wang, “Integrated Assessment of Economic Supply and Environmental Effects of Biomass Co-Firing in Coal Power Plants: A Case Study of Jiangsu, China”, Energies 16, 2725, 2023, https://doi.org/10.3390/en16062725

[11] X.Wang, Z.U. Rahman, Z. Lv, Y. Zhu; R. Ruan, S. Deng, L. Zhang, H. Tan, “Experimental Study and Design of Biomass Co-Firing in a Full-Scale Coal-Fired Furnace with Storage Pulverizing System”. Agronomy 11, 810, 2021, https://doi.org/10.3390/agronomy11040810

[12] R. Eriend, C. Wilujeng, & P.S. Darmanto, “Evaluating the Challenges of Biomass Co-Firing for Energy Transition: A Review”, ITB Graduate School Conference, 4, 1, 2025, Retrieved from https://gcs.itb.ac.id/proceeding-igsc/igsc/article/view/322

[13] BPS, Statistical Yearbook of Indonesia 2025, Vol. 53, 2025, BPS-Statistics Indonesia.

[14] L. Schaefer and A. Atreya, “Exploring the Potentials and Challenges of Renewable Energy Sources”, Journal of Computing and Natural Science 4, 2, 2024, https://doi.org/10.53759/ 181X/JCNS202404009

[15] M.R. Errera, T.A. da C. Dias, D.M.Y. Maya, E.E.S. Lora, “Global bioenergy potentials projections for 2050”, Biomass and Bioenergy 170, 106721, 2023, https://doi.org/ 10.1016/j.biombioe.2023.106721

[16] B.C.H. Simangunsong, V.J. Sitanggang, E.G.T. Manurung, A. Rahmadi, G.A. Moore, L. Aye, A.H. Tambunan, “Potential forest biomass resource as feedstock for bioenergy and its economic value in Indonesia”, Forest Policy and Economics 81, 10–17, 2017, http://dx.doi.org/10.1016/j.forpol.2017.03.022

[17] E.I. Rhofita, R. Rachmat, M. Meyer, L. Montastruc, “Mapping analysis of biomass residue valorization as the future green energy generation in Indonesia”, Journal of Cleaner Production 354, 131667, 2022, https://doi.org/10.1016/j.jclepro.2022.131667

[18] Hardhi, Biomass Energy, in Ardiansyah & Ekadewi (Eds.) Indonesia Post-Pandemic Outlook: Strategy toward Net-Zero Emissions by 2060 from the Renewable and Carbon Neutral Perspective, Chapter 8, BRIN Publishing, 2022, Jakarta

[19] KESDM, Peta Potensi EBT di Seluruh Indonesia: Potensi Per Provinsi, Kementerian Energi dan Sumber Daya Mineral, 2023, Jakarta

[20] A. Kaur, R. Bharti, R. Sharma, “Municipal solid waste as a source of energy”, Materials Today Proceedings, 81, 6, 2021, https://doi.org/10.1016/j.matpr.2021.04.286

[21] T.M.I. Mahlia, N. Ismail, N. Hossain, A.S. Silitonga, A.H. Shamsuddin, “Palm oil and its wastes as bioenergy sources: a comprehensive review”, Environmental Science and Pollution Research, 2019, https://doi.org/10.1007/s11356-019-04563-x

[22] P.M. Gopal, N.M. Sivaram, D. Barik, Paper Industry Wastes and Energy Generation From Wastes, Woodhead Publishing Series in Energy, 2019, https://doi.org/10.1016/B978-0-08-102528-4.00007-9

[23] A. Kumar, A. Roy, R. Priyadarshinee, B. Sengupta, A. Malaviya, D. Dasguptamanda, T. Mandal, “Economic and sustainable management of wastes from rice industry: combating the potential threats”, Environ Sci Pollut Res, 24, 1–3, 2017, https://doi.org/10.1007/s11356-017-0293-7

[24] M. Amjad, S. Hussain, and A. Mubashir, “A Perspective Review on Sugar Industry Wastes, Uses and Treatment Techniques”, J Waste Manage Xenobio, 6, 2, 000186, 2023, https://doi.org/10.23880/oajwx-16000186

[25] R. Malinowski, E. Meller, I. Ochmian, K. Malinowska, M. Figiel-Kroczyńska, “Chemical Composition of Industrial Wood Waste and the Possibility of Its Management”, Civil and Environmental Engineering Reports, 32, 4, 0167-0183, 2022, https://doi.org/10.2478/Ceer-2022-0051

[26] V. Schueler, S. Fuss, J.C. Steckel, U. Weddige and T. Beringer, “Productivity ranges of sustainable biomass potentials from non agricultural land”, Environ. Res. Lett. 11, 074026, 2016, http://dx.doi.org/10.1088/1748-9326/11/7/074026

[27] Ditjen Gatrik, Jenis Usaha dan Tata Cara Perizinan Usaha Penyediaan Tenaga Listrik, Disampaikan pada Webinar Perizinan Usaha Ketenagalistrikan Pasca Pemberlakuan UU No. 11/2020 tentang Cipta Kerja, Direktorat Jenderal Ketenagalistrikan, Kementerian ESDM, 2021, Jakarta

[28] KESDM, Implementation of Co-firing until December 2023, unpublished report, Kementerian Energi dan Sumber Daya Mineral, 2024.

[29] M.S. Roni, S. Chowdhury, S. Mamun, M. Marufuzzaman, W. Lein, S. Johnson, “Biomass co-firing technology with policies, challenges, and opportunities: A global review”, Renewable and Sustainable Energy Reviews, 78, 1089–1101, 2017, http://dx.doi.org/10.1016/j.rser.2017.05.023

[30] PLN, Rencana Usaha Penyediaan Tenaga Listrik (RUPTL) PT PLN (Persero) 2021 – 2030, 2021, Jakarta

[31] I. Fitriana, Hadiyanto, B. Warsito, E. Hilmawan, J. Santosa, “The Optimization of Power Generation Mix To Achieve Net Zero Emission Pathway in Indonesia without Specific Time Target”, International Journal of Sustainable Energy Planning and Management, Vol. 41, 1–15, 2024, http://doi.org/10.54337/ijsepm.8263

[32] A.H. Kuncoro, J. Santosa, I. Fitriana, A. Nurrohim, A. Sugiyono, Slamet, E. Djubaedah, V. Nurliyanti, N. Niode, P.T. Wijaya, “Towards Net Zero Emission in Indonesia: Strategic Fuel Demand Analysis for Sustainable Electricity (2022-2060)”, Evergreen, Vol. 11, Issue 04, pp. 3606-3617, 2024, https://doi.org/10.5109/7326993

[33] C.G. Heaps, LEAP: The Low Emissions Analysis Platform [Software version: 2024.2.0.10], Stockholm Environment Institute, Somerville, MA, 2022, https://leap.sei.org

[34] K. Handayani, I. Overland, B. Suryadi, R. Vakulchuk, "Integrating 100% renewable energy into electricity systems: A net-zero analysis for Cambodia, Laos, and Myanmar", Energy Reports, 10, 4849–4869, 2023, https://doi.org/10.1016/j.egyr.2023.11.005

[35] Bappenas, Visi Indonesia 2045, Disampaikan dalam Orasi Ilmiah Fakultas Ekonomi dan Bisnis, Universitas Indonesia, 2017, Jakarta

[36] Bappenas, Peta Jalan dan Rencana Aksi Ekonomi Sirkular di Indonesia 2025 – 2045, 2024, Jakarta

[37] L.D. Hersaputri, R. Yeganyan, C. Cannone, F.A. Plazas-Niño, S. Osei-Owusu, Y. Kountouris, M. Howells, “Techno-economic data and assumptions for long-term energy systems modelling in Indonesia”, Data in Brief 54, 110323, 2024, https://doi.org/10.1016/j.dib.2024.110323

[38] IPCC, 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Intergovernmental Panel on Climate Change, 2006

[39] GoI, National Inventory Document: Indonesia Greenhouse Gases Inventory 2000-2022, Government of Indonesia, 2024

[40] GoI, Rencana Pembangunan Jangka Panjang Nasional 2025-2015, Government of Indonesia, 2024

[41] BPS, Proyeksi Penduduk Indonesia 2020-2050 Hasil Sensus Penduduk 2020, Badan Pusat Statistik, Jakarta, 2024