GIS-AHP for Optimal Solar Site Selection: A Case Study of Iraq and Its Implications for Climate Change
Main Article Content
Abstract
Interest in renewable energy sources to meet the energy needs of tomorrow has sharply increased across the world. This applies particularly to wind power and solar power, forward-oriented industries which have both achieved rapid development in recent years. Large-scale solar photovoltaic (SPV) projects can be easily completed in just 10-15 years, depending on the timeline for government approval. On-site water storage, continuous access to transportation, the ability of the local workforce and availability of solar panels will influence total cost for a given configuration. Taking all of these factors into account helps make sure, that an currently illegal but possible proposal will become illegal in the future too. This study uses GIS (Geographic Information System) and MCDM (Multi-Criteria Decision-Making) to give an initial evaluation of the best locations for large-scale SPV plants in Iraq. The Analytical Hierarchy Process (AHP) was then applied to weight the individual criteria, and integrate them into final suitability mapping with ArcGIS 10.8 software. The results indicate that 27,614 km² (6.3% of Iraq's total area) is suitable for SPV installation, and that annual generation potential varies from 8,700 to 12,595 MWh / km². If 5-20% of these areas are used around the world, then a total of between 3.39 and 13.54 TWh could be provided by SPV installations each year on land. With an efficiency level 15%. As our climate models show average temperatures may reach 34-35°C by the year 2100, this could cause SPV efficiency to fall
Article Details
Articles published in International Journal of Sustainable Energy Planning and Management are following the license Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0)
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License: Attribution - NonCommercial - NoDerivs (by-nc-nd). Further information about Creative Commons
Authors can archive post-print (final draft post-refereering) on personal websites or institutional repositories under these conditions:
- Publishers version cannot be stored elsewhere but on publishers homepage
- Published source must be acknowledged
- Must link to publisher version
References
[1] Al Garni, H. Z., & Awasthi, A. (2017). Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia. Applied energy, 206, 1225-1240. https://doi.org/10.1016/j.apenergy.2017.10.024
[2] Al-Shabeeb, A. R., Al-Adamat, R., & Mashagbah, A. (2016). AHP with GIS for a preliminary site selection of wind turbines in the North West of Jordan. International Journal of Geosciences, 7(10), 1208-1221. http://dx.doi.org/10.4236/ijg.2016.710090
[3] Hussain, Z. S., Alhayali, S., Dallalbashi, Z. E., Salih, T. K. M., & Yousif, M. K. (2022, July). A look at the wind energy prospects in Iraq. In 2022 International Conference on Engineering & MIS (ICEMIS) (pp. 1-7). IEEE. https://doi.org/10.1109/ICEMIS56295.2022.9914119
[4] Dihrab, S. S., & Sopian, K. (2010). Electricity generation of hybrid PV/wind systems in Iraq. Renewable Energy, 35(6), 1303-1307. https://doi.org/10.1016/j.renene.2009.12.010
[5] Hafez, A. A., Hatata, A. Y., & Aldl, M. M. (2019). Optimal sizing of hybrid renewable energy system via artificial immune system under frequency stability constraints. Journal of Renewable and Sustainable Energy, 11(1). https://doi.org/10.1063/1.5047421
[6] Liu, B. Y., & Jordan, R. C. (1960). The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. Solar energy, 4(3), 1-19. https://doi.org/10.1016/0038-092X(60)90062-1
[7] Gueymard, C. A. (2003). Direct solar transmittance and irradiance predictions with broadband models. Part I: detailed theoretical performance assessment. Solar Energy, 74(5), 355-379. https://doi.org/10.1016/S0038-092X(03)00195-6
[8] Köberle, A. C., Gernaat, D. E., & van Vuuren, D. P. (2015). Assessing current and future techno-economic potential of concentrated solar power and photovoltaic electricity generation. Energy, 89, 739-756. https://doi.org/10.1016/j.energy.2015.05.145
[9] Obaideen, K., Olabi, A. G., Al Swailmeen, Y., Shehata, N., Abdelkareem, M. A., Alami, A. H., ... & Sayed, E. T. (2023). Solar energy: Applications, trends analysis, bibliometric analysis and research contribution to sustainable development goals (SDGs). Sustainability, 15(2), 1418. https://doi.org/10.3390/su15021418
[10] Nassif, W. G., Elhmaidi, D., & Al-Timimi, Y. K. (2024). Selecting Suitable Sites for Wind Energy Harvesting in Iraq using GIS Techniques. Iraqi Journal of Science, 5959-5971. https://doi.org/10.24996/ijs.2024.65.10(SI).6
[11] Mishaal, A. K., Abd Ali, A. M., & Khamees, A. B. (2020, November). Wind distribution map of Iraq-A comparative study. In IOP Conference Series: Materials Science and Engineering (Vol. 928, No. 2, p. 022044). IOP Publishing. https://doi.org/10.1088/1757-899X/928/2/022044
[12] Al-Kayiem, H. H., & Mohammad, S. T. (2019). Potential of renewable energy resources with an emphasis on solar power in Iraq: An outlook. Resources, 8(1), 42. https://doi.org/10.3390/resources8010042
[13] Abd Ali, L. M., Al-Rufaee, F. M., Kuvshinov, V. V., Krit, B. L., Al-Antaki, A. M., & Morozova, N. V. (2020). Study of hybrid wind–solar systems for the Iraq energy complex. Applied Solar Energy, 56(4), 284-290. https://doi.org/10.3103/S0003701X20040027
[14] Chaichan, M. T., & Kazem, H. A. (2018). Status of Renewable Energy in Iraq. In Generating Electricity Using Photovoltaic Solar Plants in Iraq (pp. 35-45). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-75031-6_3
[15] Al-akayshee, A. S., Kuznetsov, O. N., Alwazah, I., Deeb, M., & Sultan, H. M. (2021, January). Challenges and obstacles facing the growth of using a solar energy in Iraq. In 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus) (pp. 1360-1364). IEEE. https://doi.org/10.1109/ElConRus51938.2021.9396371
[16] Eroğlu, Ö., Potur, E. A., Kabak, M., & Gencer, C. (2023). A literature review: Wind energy within the scope of MCDM methods. Gazi University Journal of Science, 36(4), 1578-1599. https://doi.org/10.35378/gujs.1090337
[17] Khazael, S. M., & Al-Bakri, M. (2021). The optimum site selection for solar energy farms using AHP in GIS environment, a case study of Iraq. Iraqi Journal of Science, 4571-4587. https://doi.org/10.24996/ijs.2021.62.11(SI).36
[18] Al-Abadi, A. M., Handhal, A. M., Abdulhasan, M. A., Ali, W. L., Hassan, J. J., & Al Aboodi, A. H. (2025). Optimal siting of large photovoltaic solar farms at Basrah governorate, Southern Iraq using hybrid GIS-based Entropy-TOPSIS and AHP-TOPSIS models. Renewable Energy, 241, 122308. https://doi.org/10.1016/j.renene.2024.122308
[19] Østergaard, P. A. (2024). Sustainable Energy Planning and Management with PV, Waste heat, positive energy districts and CO2 accounting. International Journal of Sustainable Energy Planning and Management, 41, 1-4. https://doi.org/10.54337/ijsepm.8513
[20] Connolly, D., & Mathiesen, B. V. (2014). A technical and economic analysis of one potential pathway to a 100% renewable energy system. International Journal of Sustainable Energy Planning and Management, 1, 7-28. https://doi.org/10.5278/ijsepm.2014.1.2
[21] Tomc, E., & Vassallo, A. M. (2018). Community electricity and storage central management for multi-dwelling developments: an analysis of operating options. International Journal of Sustainable Energy Planning and Management, 17, 15-30. https://doi.org/10.5278/ijsepm.2018.17.3
[22] Hussain, M. T., & Mahdi, E. J. (2018, May). Assessment of solar photovoltaic potential in Iraq. In Journal of Physics: Conference Series (Vol. 1032, No. 1, p. 012007). IOP Publishing.
https://doi.org/10.1088/1742-6596/1032/1/012007
[23] Stevens, M. L. (2007). Iraq and Iran in ecological perspective: the Mesopotamian marshes and the Hawizeh-Azim Peace Park. Peace Parks: Conservation and Con ict Resolution, 313-32.https://books.google.tn/books/content?id=pae0qMYFtaUC&pg=PA376&img=1&zoom=3&hl=en&sig=ACfU3U2qYcRrzK7xz5zirwsMVQrlBogsaw&w=1280
[24] Alabbas, A. A. K., & Alumery, A. O. A. (2022). Comparative Study of Environmental Protected Areas Laws and Legislation Between Iraqi and Its Neighbors. International Journal of Sustainable Development & Planning, 17(7). https://doi.org/10.18280/ijsdp.170705
[25] Al-Ansari, N., Abed, S. A., & Ewaid, S. H. (2021). Agriculture in Iraq. Journal of Earth Sciences and Geotechnical Engineering, 11(2), 223-241. https://doi.org/10.47260/jesge/1126
[26] Erzaij, K. R., Hatem, W. A., & Maula, B. H. (2020). Applying intelligent portfolio management to the evaluation of stalled construction projects. Open Engineering, 10(1), 552-562. https://doi.org/10.1515/eng-2020-0064
[27] Understanding Weighted Overlay," ESRI, 2014. [Online]. Available: https://www.esri.com/about/newsroom/arcuser/understanding-weighted-overlay/
[29] Jasim, A. I., & Awchi, T. A. (2020). Regional meteorological drought assessment in Iraq. Arabian Journal of Geosciences, 13(7), 284. https://doi.org/10.1007/s12517-020-5234-y
[30] Al-Timimi, Y. K., & Al-Khudhairy, A. A. (2018, May). Spatial and Temporal Temperature trends on Iraq during 1980-2015. In Journal of Physics: Conference Series (Vol. 1003, No. 1, p. 012091). IOP Publishing. https://doi.org/10.1088/1742-6596/1003/1/012091
[31] Al-Salihi, A. M., & AL-Ramahy, Z. A. (2017). A neural network model for estimation soil temperature bases on limited meteorological parameters in selected provinces in Iraq. Journal of Applied and Advanced Research, 2(5), 292-300.http://dx.doi.org/10.21839/jaar.2017.v2i5.106
[32] Abass, A. Z., & Pavlyuchenko, D. A. (2019). The exploitation of western and southern deserts in Iraq for the production of solar energy. International Journal of Electrical and Computer Engineering, 9(6), 4617. https://doi.org/10.11591/ijece.v9i6.pp4617-4624
[33] CIA. (2023). Iraq — Political Map. The World Factbook. Central Intelligence Agency.
Available at: https://www.cia.gov/the-world-factbook/countries/iraq/
[34] Wang, Y., Tao, S., Chen, X., Huang, F., Xu, X., Liu, X., ... & Liu, L. (2022). Method multi-criteria decision-making method for site selection analysis and evaluation of urban integrated energy stations based on geographic information system. Renewable energy, 194, 273-292. https://doi.org/10.1016/j.renene.2022.05.087
[35] Villacreses, G., Jijón, D., Nicolalde, J. F., Martínez-Gómez, J., & Betancourt, F. (2022). Multicriteria decision analysis of suitable location for wind and photovoltaic power plants on the Galápagos Islands. Energies, 16(1), 29. https://doi.org/10.3390/en16010029
[36] Xu, Y., Li, Y., Zheng, L., Cui, L., Li, S., Li, W., & Cai, Y. (2020). Site selection of wind farms using GIS and multi-criteria decision making method in Wafangdian, China. Energy, 207, 118222. https://doi.org/10.1016/j.energy.2020.118222
[37] Ali, S., Taweekun, J., Techato, K., Waewsak, J., & Gyawali, S. (2019). GIS based site suitability assessment for wind and solar farms in Songkhla, Thailand. Renewable Energy, 132, 1360-1372.. https://doi.org/10.1016/j.renene.2018.09.035
[38] Malczewski, J., & Rinner, C. (2015). Multicriteria decision analysis in geographic information science (Vol. 1, pp. 55-77). New York: Springer.
https://link.springer.com/book/10.1007/978-3-540-74757-4
[39] Stanzione, T., & Lashlee, J. D. (2008). Geospatially enabled modeling and simulation. Society for Modeling & Simulation International.
https://proceedings.esri.com/library/userconf/feduc08/papers/gems_feduc2008.pdf
[40] de Lange, N. (2023). Geoinformatics in Theory and Practice. https://link.springer.com/book/10.1007/978-3-662-65758-4
[41] Danielson, M., & Ekenberg, L. (2017). A robustness study of state-of-the-art surrogate weights for MCDM. Group Decision and Negotiation, 26(4), 677-691.https://doi.org/10.1007/s10726-016-9494-6
[42] Polo-Castañeda, M., Gomez-Rojas, J., & Linero-Cueto, J. (2021). Application of AHP and GIS for determination of suitable wireless sensor network zones for oceanographic monitoring in the South Caribbean Sea upwelling zone. Int. J. Adv. Sci. Eng. Inf. Technol, 11(5), 1696-1703. https://doi.org/10.18517/ijaseit.11.5.14293
[43] Danielson, M., & Ekenberg, L. (2017). A robustness study of state-of-the-art surrogate weights for MCDM. Group Decision and Negotiation, 26(4), 677-691. https://doi.org/10.1007/s10726-016-9494-6
[44] Saraswat, S. K., Digalwar, A. K., Yadav, S. S., & Kumar, G. (2021). MCDM and GIS based modelling technique for assessment of solar and wind farm locations in India. Renewable Energy, 169, 865-884.https://doi.org/10.1016/j.renene.2021.01.056
[45] Gacu, J. G., Garcia, J. D., Fetalvero, E. G., Catajay-Mani, M. P., & Monjardin, C. E. F. (2023). Suitability analysis using GIS-based analytic hierarchy process (AHP) for solar power exploration. Energies, 16(18), 6724. https://doi.org/10.3390/en16186724
[46] Xie, J., Zhang, H., Wang, Z., & Guo, X. (2022, May). Research on multi-target selection and sequencing based on analytic hierarchy process. In Journal of Physics: Conference Series (Vol. 2221, No. 1, p. 012044). IOP Publishing. https://doi.org/10.1088/1742-6596/2221/1/012044
[47] Liang, F., Brunelli, M., & Rezaei, J. (2020). Consistency issues in the best worst method: Measurements and thresholds. Omega, 96, 102175. https://doi.org/10.1016/j.omega.2019.102175
[48] Stofkova, J., Krejnus, M., Stofkova, K. R., Malega, P., & Binasova, V. (2022). Use of the analytic hierarchy process and selected methods in the managerial decision-making process in the context of sustainable development. Sustainability, 14(18), 11546.
https://doi.org/10.3390/su141811546
[49] Zhang, Z., Liu, X., & Yang, S. (2009, June). A note on the 1–9 scale and index scale in AHP. In International Conference on Multiple Criteria Decision Making (pp. 630–634). Berlin, Heidelberg: Springer.
https://doi.org/10.1007/978-3-642-02279-1_91
[50] Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega, 53, 49-57 https://doi.org/10.1016/j.omega.2014.11.009
[51] Rahimi, I., Azeez, S. N., & Ahmed, I. H. (2019). Mapping forest-fire potentiality using remote sensing and GIS, case study: Kurdistan Region-Iraq. In Environmental remote sensing and GIS in Iraq (pp. 499-513). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-21344-2_20
[52] Zhang, Y., Ren, J., Pu, Y., & Wang, P. (2020). Solar energy potential assessment: A framework to integrate geographic, technological, and economic indices for a potential analysis. Renewable Energy, 149, 577-586.https://doi.org/10.1016/j.renene.2019.12.071
[53] Sedrati, M., Maanan, M., & Rhinane, H. (2019). PV power plants sites selection using gis-fahp based approach in north-western morocco. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 385-392.https://doi.org/10.5194/isprs-archives-XLII-4-W19-385-2019
[54] Asakereh, A., Soleymani, M., & Sheikhdavoodi, M. J. (2017). A GIS-based Fuzzy-AHP method for the evaluation of solar farms locations: Case study in Khuzestan province, Iran. Solar Energy, 155, 342-353.https://doi.org/10.1016/j.solener.2017.05.075
[55] Shen, H., Walter, D., Wu, Y., Fong, K. C., Jacobs, D. A., Duong, T., ... & Catchpole, K. R. (2020). Monolithic perovskite/Si tandem solar cells: pathways to over 30% efficiency. Advanced energy materials, 10(13), 1902840.
https://doi.org/10.1002/aenm.201902840
[56] Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937-1958. https://doi.org/10.5194/gmd-9-1937-2016
[57] World Climate Research Programme (WCRP). Coupled Model Intercomparison Project Phase 6 (CMIP6) – Official Dataset Portal. Available online: https://wcrp-cmip.org/cmip6/
