Application of a Costing Methodology to Estimate Capital Costs of Solar Thermal Systems in Residential Portuguese Context
Main Article Content
Abstract
The concerns regarding the environmental damage require changes not only on how the energy is consumed but also how it is produced. The close relationship between energy use and the economic growth exposes the need for continuous monitoring of energy consumption, which cannot be achieved without assessing capital and operational costs from its conversion to end-use. Solar thermal systems offer few advantages over other renewable resources to meet the energy demand in the small-scale building sector. Solar-thermal technologies can play a leading role in meeting the decarbonisation targets set in Europe. The reports from the International Energy Agency (IEA) shows that solar heating has the potential to cover more than 16% of the low-temperature heat use in energy mix scenario. In Europe, this share might translate into 45% growth of the installed solar thermal capacity by 2020, setting a challenging target of 1 m2 of collector area installed per capita by 2020 and of 1.3 m2 by 2050. The main objective of the present work is to define a costing methodology able to estimate the capital cost of solar-thermal systems according to the system size and energy requirements of a specific residential building. The costing methodology consists of the derivation of a cost expression for each component by integrating thermodynamic and cost coefficients, adjusted for this kind of technology, and also taking into account real market data. The model was validated for a reference dwelling in Lisbon, with an occupation of 4 people with an estimated energy need of 2 037 kWh/year in terms of DHW. Results of the reference scenario show that is required at least 4 m2 of solar collector and the system cost ranges from 703.2€ per m2 to 763.2€ per m2, depending on the acceptable storage tank capacity.
Article Details
Articles published in International Journal of Sustainable Energy Planning and Management are following the license Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0)
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License: Attribution - NonCommercial - NoDerivs (by-nc-nd). Further information about Creative Commons
Authors can archive post-print (final draft post-refereering) on personal websites or institutional repositories under these conditions:
- Publishers version cannot be stored elsewhere but on publishers homepage
- Published source must be acknowledged
- Must link to publisher version