Multi-objective optimization of an energy community: an integrated and dynamic approach for full decarbonisation in the European Alps

Main Article Content

Diego Viesi
https://orcid.org/0000-0003-0254-9112
Md Shahriar Mahbub
https://orcid.org/0000-0001-8629-3980
Alessandro Brandi
Jakob Zinck Thellufsen
Poul Alberg Østergaard
https://orcid.org/0000-0002-6796-6526
Henrik Lund
https://orcid.org/0000-0002-4930-7885
Marco Baratieri
Luigi Crema

Abstract

At the local level, energy communities are at the forefront of the European Green Deal strategy offering new opportunities for citizens to get actively involved in energy markets. The scope of this study is to propose a multi-objective optimization framework to minimize both carbon dioxide emissions and total annual costs in an energy community, considering, within different constraints, a wide availability of decision variables including local renewable energy sources, sector coupling, storage and hydrogen. The methodology involves the coupling of the software EnergyPLAN with a multi-objective evolutionary algorithm, considering 2030 and 2050 as target years and modelling a set of eight types of scenarios, each consisting of 100 optimal systems out of 10,000. The case study is an energy community in the European Alps. The results show, on the one hand, the key role of sector coupling technologies such as cogeneration, heat pumps and electric vehicles in exploiting local renewable energy sources and, on the other hand, the higher costs in introducing both electricity storage to achieve a complete decarbonisation and hydrogen as an alternative strategy in the electricity, thermal and transport sectors.

Article Details

How to Cite
Viesi, D., Mahbub, M. S., Brandi, A., Thellufsen, J. Z., Østergaard, P. A., Lund, H., … Crema, L. (2023). Multi-objective optimization of an energy community: an integrated and dynamic approach for full decarbonisation in the European Alps. International Journal of Sustainable Energy Planning and Management, 38, 8–29. https://doi.org/10.54337/ijsepm.7607
Section
Articles

References

EUROPEAN COMMISSION, 2019. The European Green Deal, https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en.

Caramizaru, A. and Uihlein, A., 2021. Energy communities: an overview of energy and social innovation, 2020. Erişim Tarihi: Haziran, 29, https://doi.org/10.2760/180576.

EUROPEAN COMMISSION, 2019. Clean energy for all Europeans, https://energy.ec.europa.eu/topics/energy-strategy/clean-energy-all-europeans-package_en.

EUROPEAN UNION, 2019. Directive (EU) 2019/944 of the European Parliament and of the Council of 5 June 2019 on common rules for the internal market for electricity and amending Directive 2012/27/EU, https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32019L0944.

EUROPEAN UNION, 2018. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources, https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2018.328.01.0082.01.ENG.

Lund, H., Thellufsen, J.Z., Østergaard, P.A., Sorknæs, P., Skov, I.R. and Mathiesen, B.V., 2021. EnergyPLAN–Advanced analysis of smart energy systems. Smart Energy, 1, p.100007, https://doi.org/10.1016/j.segy.2021.100007.

Østergaard, P.A., 2009. Reviewing optimisation criteria for energy systems analyses of renewable energy integration. Energy, 34(9), pp.1236-1245, https://doi.org/10.1016/j.energy.2009.05.004.

Lund, H., Andersen, A.N., Østergaard, P.A., Mathiesen, B.V. and Connolly, D., 2012. From electricity smart grids to smart energy systems–a market operation based approach and understanding. Energy, 42(1), pp.96-102, https://doi.org/10.1016/j.energy.2012.04.003.

Lund, H., Østergaard, P.A., Connolly, D. and Mathiesen, B.V., 2017. Smart energy and smart energy systems. Energy, 137, pp.556-565, https://doi.org/10.1016/j.energy.2017.05.123.

Mathiesen, B.V., Lund, H., Connolly, D., Wenzel, H., Østergaard, P.A., Möller, B., Nielsen, S., Ridjan, I., Karnøe, P., Sperling, K. and Hvelplund, F.K., 2015. Smart Energy Systems for coherent 100% renewable energy and transport solutions. Applied energy, 145, pp.139-154, https://doi.org/10.1016/j.apenergy.2015.01.075.

Chang, M., Thellufsen, J.Z., Zakeri, B., Pickering, B., Pfenninger, S., Lund, H. and Østergaard, P.A., 2021. Trends in tools and approaches for modelling the energy transition. Applied Energy, 290, p.116731, https://doi.org/10.1016/j.apenergy.2021.116731.

Lund, H., Arler, F., Østergaard, P.A., Hvelplund, F., Connolly, D., Mathiesen, B.V. and Karnøe, P., 2017. Simulation versus optimisation: theoretical positions in energy system modelling. Energies, 10(7), p.840, https://doi.org/10.3390/en10070840.

Johannsen, R.M., Prina, M.G., Østergaard, P.A., Mathiesen, B.V. and Sparber, W., 2023. Municipal energy system modelling–A practical comparison of optimisation and simulation approaches. Energy, 269, p.126803, https://doi.org/10.1016/j.energy.2023.126803.

Østergaard, P.A., 2015. Reviewing EnergyPLAN simulations and performance indicator applications in EnergyPLAN simulations. Applied Energy, 154, pp.921-933, https://doi.org/10.1016/j.apenergy.2015.05.086.

Østergaard, P.A., Lund, H., Thellufsen, J.Z., Sorknæs, P. and Mathiesen, B.V., 2022. Review and validation of EnergyPLAN. Renewable and Sustainable Energy Reviews, 168, p.112724, https://doi.org/10.1016/j.rser.2022.112724.

Sorknæs, P., Djørup, S.R., Lund, H. and Thellufsen, J.Z., 2019. Quantifying the influence of wind power and photovoltaic on future electricity market prices. Energy conversion and management, 180, pp.312-324., https://doi.org/10.1016/j.enconman.2018.11.007.

Thellufsen, J.Z. and Lund, H., 2015. Energy saving synergies in national energy systems. Energy Conversion and Management, 103, pp.259-265, https://doi.org/10.1016/j.enconman.2015.06.052.

Hansen, K., Mathiesen, B.V. and Skov, I.R., 2019. Full energy system transition towards 100% renewable energy in Germany in 2050. Renewable and Sustainable Energy Reviews, 102, pp.1-13, https://doi.org/10.1016/j.rser.2018.11.038.

Askeland, K., Bozhkova, K.N. and Sorknæs, P., 2019. Balancing Europe: Can district heating affect the flexibility potential of Norwegian hydropower resources?. Renewable energy, 141, pp.646-656, https://doi.org/10.1016/j.renene.2019.03.137.

Gota, D.I., Lund, H. and Miclea, L., 2011. A Romanian energy system model and a nuclear reduction strategy. Energy, 36(11), pp.6413-6419, https://doi.org/10.1016/j.energy.2011.09.029.

Fernandes, L. and Ferreira, P., 2014. Renewable energy scenarios in the Portuguese electricity system. Energy, 69, pp.51-57, https://doi.org/10.1016/j.energy.2014.02.098.

Yuan, M., Thellufsen, J.Z., Lund, H. and Liang, Y., 2020. The first feasible step towards clean heating transition in urban agglomeration: A case study of Beijing-Tianjin-Hebei region. Energy Conversion and Management, 223, p.113282, https://doi.org/10.1016/j.enconman.2020.113282.

Waenn, A., Connolly, D. and Gallachóir, B.Ó., 2014. Investigating 100% renewable energy supply at regional level using scenario analysis. International Journal of Sustainable Energy Planning and Management, 3, pp.21-32, https://doi.org/10.5278/ijsepm.2014.3.3.

Menapace, A., Thellufsen, J.Z., Pernigotto, G., Roberti, F., Gasparella, A., Righetti, M., Baratieri, M. and Lund, H., 2020. The design of 100% renewable smart urban energy systems: The case of Bozen-Bolzano. Energy, 207, p.118198, https://doi.org/10.1016/j.energy.2020.118198.

Thellufsen, J.Z., Lund, H., Sorknæs, P., Østergaard, P.A., Chang, M., Drysdale, D., Nielsen, S., Djørup, S.R. and Sperling, K., 2020. Smart energy cities in a 100% renewable energy context. Renewable and Sustainable Energy Reviews, 129, p.109922, https://doi.org/10.1016/j.rser.2020.109922.

Sougkakis, V., Lymperopoulos, K., Nikolopoulos, N., Margaritis, N., Giourka, P. and Angelakoglou, K., 2020. An investigation on the feasibility of near-zero and positive energy communities in the greek context. Smart Cities, 3(2), pp.362-384, https://doi.org/10.3390/smartcities3020019.

Pastore, L.M., Basso, G.L., Ricciardi, G. and de Santoli, L., 2022. Synergies between Power-to-Heat and Power-to-Gas in renewable energy communities. Renewable Energy, 198, pp.1383-1397, https://doi.org/10.1016/j.renene.2022.08.141.

Bhuvanesh, A., Christa, S.J., Kannan, S. and Pandiyan, M.K., 2018. Aiming towards pollution free future by high penetration of renewable energy sources in electricity generation expansion planning. Futures, 104, pp.25-36, https://doi.org/10.1016/j.futures.2018.07.002.

Cantarero, M.M.V., 2018. Reviewing the Nicaraguan transition to a renewable energy system: Why is “business-as-usual” no longer an option?. Energy policy, 120, pp.580-592, https://doi.org/10.1016/j.enpol.2018.05.062.

Kiwan, S. and Al-Gharibeh, E., 2020. Jordan toward a 100% renewable electricity system. Renewable Energy, 147, pp.423-436, https://doi.org/10.1016/j.renene.2019.09.004.

Matak, N., Tomić, T., Schneider, D.R. and Krajačić, G., 2021. Integration of WtE and district cooling in existing Gas-CHP based district heating system–Central European city perspective. Smart Energy, 4, p.100043, https://doi.org/10.1016/j.segy.2021.100043.

Dominković, D.F., Rashid, K.B.A., Romagnoli, A., Pedersen, A.S., Leong, K.C., Krajačić, G. and Duić, N., 2017. Potential of district cooling in hot and humid climates. Applied Energy, 208, pp.49-61, https://doi.org/10.1016/j.apenergy.2017.09.052.

Bamisile, O., Obiora, S., Huang, Q., Okonkwo, E.C., Olagoke, O., Shokanbi, A. and Kumar, R., 2020. Towards a sustainable and cleaner environment in China: Dynamic analysis of vehicle-to-grid, batteries and hydro storage for optimal RE integration. Sustainable Energy Technologies and Assessments, 42, p.100872, https://doi.org/10.1016/j.seta.2020.100872.

Bamisile, O., Babatunde, A., Adun, H., Yimen, N., Mukhtar, M., Huang, Q. and Hu, W., 2021. Electrification and renewable energy nexus in developing countries; an overarching analysis of hydrogen production and electric vehicles integrality in renewable energy penetration. Energy Conversion and Management, 236, p.114023, https://doi.org/10.1016/j.enconman.2021.114023.

Doepfert, M. and Castro, R., 2021. Techno-economic optimization of a 100% renewable energy system in 2050 for countries with high shares of hydropower: The case of Portugal. Renewable Energy, 165, pp.491-503, https://doi.org/10.1016/j.renene.2020.11.061.

Tomić, T., Dominković, D.F., Pfeifer, A., Schneider, D.R., Pedersen, A.S. and Duić, N., 2017. Waste to energy plant operation under the influence of market and legislation conditioned changes. Energy, 137, pp.1119-1129, https://doi.org/10.1016/j.energy.2017.04.080.

Pupo-Roncallo, O., Campillo, J., Ingham, D., Ma, L. and Pourkashanian, M., 2021. The role of energy storage and cross-border interconnections for increasing the flexibility of future power systems: The case of Colombia. Smart Energy, 2, p.100016, https://doi.org/10.1016/j.segy.2021.100016.

De Luca, G., Fabozzi, S., Massarotti, N. and Vanoli, L., 2018. A renewable energy system for a nearly zero greenhouse city: Case study of a small city in southern Italy. Energy, 143, pp.347-362, https://doi.org/10.1016/j.energy.2017.07.004.

Bonati, A., De Luca, G., Fabozzi, S., Massarotti, N. and Vanoli, L., 2019. The integration of exergy criterion in energy planning analysis for 100% renewable system. Energy, 174, pp.749-767, https://doi.org/10.1016/j.energy.2019.02.089.

Novosel, T., Perković, L., Ban, M., Keko, H., Pukšec, T., Krajačić, G. and Duić, N., 2015. Agent based modelling and energy planning–Utilization of MATSim for transport energy demand modelling. Energy, 92, pp.466-475, https://doi.org/10.1016/j.energy.2015.05.091.

Thellufsen, J.Z., Nielsen, S. and Lund, H., 2019. Implementing cleaner heating solutions towards a future low-carbon scenario in Ireland. Journal of Cleaner Production, 214, pp.377-388, https://doi.org/10.1016/j.jclepro.2018.12.303.

Groppi, D., Garcia, D.A., Basso, G.L. and De Santoli, L., 2019. Synergy between smart energy systems simulation tools for greening small Mediterranean islands. Renewable energy, 135, pp.515-524, https://doi.org/10.1016/j.renene.2018.12.043.

Østergaard, P.A., Jantzen, J., Marczinkowski, H.M. and Kristensen, M., 2019. Business and socioeconomic assessment of introducing heat pumps with heat storage in small-scale district heating systems. Renewable energy, 139, pp.904-914, https://doi.org/10.1016/j.renene.2019.02.140.

Pfeifer, A., Dobravec, V., Pavlinek, L., Krajačić, G. and Duić, N., 2018. Integration of renewable energy and demand response technologies in interconnected energy systems. Energy, 161, pp.447-455, https://doi.org/10.1016/j.energy.2018.07.134.

Bačeković, I. and Østergaard, P.A., 2018. Local smart energy systems and cross-system integration. Energy, 151, pp.812-825, https://doi.org/10.1016/j.energy.2018.03.098.

Lund, R., Ilic, D.D. and Trygg, L., 2016. Socioeconomic potential for introducing large-scale heat pumps in district heating in Denmark. Journal of Cleaner Production, 139, pp.219-229, https://doi.org/10.1016/j.jclepro.2016.07.135.

Pillai, J.R., Heussen, K. and Østergaard, P.A., 2011. Comparative analysis of hourly and dynamic power balancing models for validating future energy scenarios. Energy, 36(5), pp.3233-3243, https://doi.org/10.1016/j.energy.2011.03.014.

Olkkonen, V., Rinne, S., Hast, A. and Syri, S., 2017. Benefits of DSM measures in the future Finnish energy system. Energy, 137, pp.729-738, https://doi.org/10.1016/j.energy.2017.05.186.

Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T.A.M.T., 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), pp.182-197, https://doi.org/10.1109/4235.996017.

Xu, J., Chen, Y., Wang, J., Lund, P.D. and Wang, D., 2022. Ideal scheme selection of an integrated conventional and renewable energy system combining multi-objective optimization and matching performance analysis. Energy Conversion and Management, 251, p.114989, https://doi.org/10.1016/j.enconman.2021.114989.

Chen, Y., Xu, Z., Wang, J., Lund, P.D., Han, Y. and Cheng, T., 2022. Multi-objective optimization of an integrated energy system against energy, supply-demand matching and exergo-environmental cost over the whole life-cycle. Energy Conversion and Management, 254, p.115203, https://doi.org/10.1016/j.enconman.2021.115203.

He, Y., Guo, S., Zhou, J., Wu, F., Huang, J. and Pei, H., 2021. The quantitative techno-economic comparisons and multi-objective capacity optimization of wind-photovoltaic hybrid power system considering different energy storage technologies. Energy Conversion and Management, 229, p.113779, https://doi.org/10.1016/j.enconman.2020.113779.

Li, L.L., Ren, X.Y., Tseng, M.L., Wu, D.S. and Lim, M.K., 2022. Performance evaluation of solar hybrid combined cooling, heating and power systems: A multi-objective arithmetic optimization algorithm. Energy Conversion and Management, 258, p.115541, https://doi.org/10.1016/j.enconman.2022.115541.

Park, S.H., Jang, Y.S. and Kim, E.J., 2021. Multi-objective optimization for sizing multi-source renewable energy systems in the community center of a residential apartment complex. Energy Conversion and Management, 244, p.114446, https://doi.org/10.1016/j.enconman.2021.114446.

Al Hasibi, R. A., 2021. Multi-objective analysis of sustainable generation expansion planning based on renewable energy potential: A case study of Bali Province of Indonesia. International Journal of Sustainable Energy Planning and Management, 31, pp.189-210, https://doi.org/10.5278/ijsepm.6474.

Roberto, R., De Iulio, R., Di Somma, M., Graditi, G., Guidi, G. and Noussan, M., 2019. A multi-objective optimization analysis to assess the potential economic and environmental benefits of distributed storage in district heating networks: A case study. International Journal of Sustainable Energy Planning and Management, 20, https://doi.org/10.5278/ijsepm.2019.20.2.

Singh, V.K., Henriques, C.O. and Martins, A.G., 2019. A multiobjective optimization approach to support end-use energy efficiency policy design–the case-study of India. International Journal of Sustainable Energy Planning and Management, 23, https://doi.org/10.5278/ijsepm.2408

Mahbub, M.S., Cozzini, M., Østergaard, P.A. and Alberti, F., 2016. Combining multi-objective evolutionary algorithms and descriptive analytical modelling in energy scenario design. Applied Energy, 164, pp.140-151, https://doi.org/10.1016/j.apenergy.2015.11.042.

Prina, M.G., Fanali, L., Manzolini, G., Moser, D. and Sparber, W., 2018. Incorporating combined cycle gas turbine flexibility constraints and additional costs into the EPLANopt model: The Italian case study. Energy, 160, pp.33-43, https://doi.org/10.1016/j.energy.2018.07.007.

Bellocchi, S., Manno, M., Noussan, M., Prina, M.G. and Vellini, M., 2020. Electrification of transport and residential heating sectors in support of renewable penetration: Scenarios for the Italian energy system. Energy, 196, p.117062, https://doi.org/10.1016/j.energy.2020.117062.

Herc, L., Pfeifer, A. and Duić, N., 2022. Optimization of the possible pathways for gradual energy system decarbonization. Renewable Energy, 193, pp.617-633, https://doi.org/10.1016/j.renene.2022.05.005.

Laha, P. and Chakraborty, B., 2021. Low carbon electricity system for India in 2030 based on multi-objective multi-criteria assessment. Renewable and Sustainable Energy Reviews, 135, p.110356, https://doi.org/10.1016/j.rser.2020.110356.

Viesi, D., Crema, L., Mahbub, M.S., Verones, S., Brunelli, R., Baggio, P., Fauri, M., Prada, A., Bello, A., Nodari, B. and Silvestri, S., 2020. Integrated and dynamic energy modelling of a regional system: A cost-optimized approach in the deep decarbonisation of the Province of Trento (Italy). Energy, 209, p.118378, https://doi.org/10.1016/j.energy.2020.118378.

Bellocchi, S., De Iulio, R., Guidi, G., Manno, M., Nastasi, B., Noussan, M., Prina, M.G. and Roberto, R., 2020. Analysis of smart energy system approach in local alpine regions-A case study in Northern Italy. Energy, 202, p.117748, https://doi.org/10.1016/j.energy.2020.117748.

Prina, M.G., Cozzini, M., Garegnani, G., Manzolini, G., Moser, D., Oberegger, U.F., Pernetti, R., Vaccaro, R. and Sparber, W., 2018. Multi-objective optimization algorithm coupled to EnergyPLAN software: The EPLANopt model. Energy, 149, pp.213-221, https://doi.org/10.1016/j.energy.2018.02.050.

Vaccaro, R. and Rocco, M.V., 2021. Quantifying the impact of low carbon transition scenarios at regional level through soft-linked energy and economy models: The case of South-Tyrol Province in Italy. Energy, 220, p.119742, https://doi.org/10.1016/j.energy.2020.119742.

Prina, M.G., Moser, D., Vaccaro, R. and Sparber, W., 2020. EPLANopt optimization model based on EnergyPLAN applied at regional level: the future competition on excess electricity production from renewables. International Journal of Sustainable Energy Planning and Management, 27, pp.35-50, https://doi.org/10.5278/ijsepm.3504.

Mahbub, M.S., Viesi, D., Cattani, S. and Crema, L., 2017. An innovative multi-objective optimization approach for long-term energy planning. Applied energy, 208, pp.1487-1504, https://doi.org/10.1016/j.apenergy.2017.08.245.

Mahbub, M.S., Viesi, D. and Crema, L., 2016. Designing optimized energy scenarios for an Italian Alpine valley: the case of Giudicarie Esteriori. Energy, 116, pp.236-249, https://doi.org/10.1016/j.energy.2016.09.090.

Cabrera, P., Carta, J.A., Lund, H. and Thellufsen, J.Z., 2021. Large-scale optimal integration of wind and solar photovoltaic power in water-energy systems on islands. Energy Conversion and Management, 235, p.113982, https://doi.org/10.1016/j.enconman.2021.113982.

Groppi, D., Nastasi, B., Prina, M.G. and Garcia, D.A., 2021. The EPLANopt model for Favignana island's energy transition. Energy conversion and management, 241, p.114295, https://doi.org/10.1016/j.enconman.2021.114295.

Yuan, M., Thellufsen, J.Z., Sorknæs, P., Lund, H. and Liang, Y., 2021. District heating in 100% renewable energy systems: Combining industrial excess heat and heat pumps. Energy Conversion and Management, 244, p.114527, https://doi.org/10.1016/j.enconman.2021.114527.

Prina, M.G., Cozzini, M., Garegnani, G., Moser, D., Oberegger, U.F., Vaccaro, R. and Sparber, W., 2016. Smart energy systems applied at urban level: the case of the municipality of Bressanone-Brixen. International Journal of Sustainable Energy Planning and Management, 10, pp.33-52, https://doi.org/10.5278/ijsepm.2016.10.4 .

de Maigret, J., Viesi, D., Mahbub, M.S., Testi, M., Cuonzo, M., Thellufsen, J.Z., Østergaard, P.A., Lund, H., Baratieri, M. and Crema, L., 2022. A multi-objective optimization approach in defining the decarbonization strategy of a refinery. Smart Energy, 6, p.100076, https://doi.org/10.1016/j.segy.2022.100076.

Lund, H., Østergaard, P.A., Connolly, D., Ridjan, I., Mathiesen, B.V., Hvelplund, F., Thellufsen, J.Z. and Sorknæs, P., 2016. Energy storage and smart energy systems. International Journal of Sustainable Energy Planning and Management, 11, pp.3-14, https://doi.org/10.5278/ijsepm.2016.11.2.

Amil, C. and Yılmazoğlu, M.Z., 2022. The importance of hydrogen for energy diversity of Turkey's energy production: 2030 projection. International Journal of Hydrogen Energy, 47(45), pp.19935-19946, https://doi.org/10.1016/j.ijhydene.2022.03.274.

Mahbub, M.S., Wagner, M. and Crema, L., 2016. Incorporating domain knowledge into the optimization of energy systems. Applied Soft Computing, 47, pp.483-493, https://doi.org/10.1016/j.asoc.2016.06.013.

https://en.wikipedia.org/wiki/Trentino, Accessed 13/12/2022.

https://www.ceis-stenico.it/, Accessed 13/12/2022.