Design approach to extend and decarbonise existing district heating systems - case study for German cities

Main Article Content

Denis Divkovic
Lukas Knorr
Henning Meschede

Abstract

This paper aims to present an approach for the planning of carbon low heat supply in a future district heating system based on open data for German cities with existing district heating networks. One focus is on the integration of industrial waste heat and the uncertainty of future waste heat sources as well as restrictions on the use of biomass. For that purpose, knowledge about the energy demand is necessary. In a first step it is shown how the demand around a heating network is estimated with spatial data and a load profile is generated. Local available heat sources are examined according to their suitability and their kind of integration in the heating network. As heat production from different units are optimised, the development of a simulation model will be presented. The simulation is based on the optimisation of the operational costs of the used technologies for heating supply. Different scenarios covering various technologies and economic assumptions are applied. The results show the levelized costs of heating as well as the ecological performance. A sensitivity analysis shows the importance of uncertainties for the economic assumptions. The results showing levelized costs of heating as well as the ecological performance underlining the advantage of excess heat integration.

Article Details

How to Cite
Divkovic, D., Knorr, L., & Meschede, H. (2023). Design approach to extend and decarbonise existing district heating systems - case study for German cities. International Journal of Sustainable Energy Planning and Management, 38, 141–156. https://doi.org/10.54337/ijsepm.7655
Section
Articles

References

UNFCCC. United Nations / Framework Convention on Climate Change (2015). Adoption of the Paris Agreement, 21st Conference of the Parties, Paris. https://unfccc.int/files/meetings/paris_nov_2015/application/pdf/paris_agreement_english_.pdf [Accessed: 20-October-2022]

Federal Ministry for the Environment, Nature Conversation, Building and Nuclear Safety (BMUB). Climate Action Plan 2050 – Principles and goals of the German government’s climate policy. 2016. Berlin.

https://unfccc.int/sites/default/files/resource/Klimaschutzplan_2050_eng_bf.pdf [Accessed: 20-October-2022]

Bundesministerium für Energie und Klimaschutz. Energieeffizienz in Zahlen – Entwicklungen und Trends in Deutschland 2021.Berlin. 2021

https://www.bmwk.de/Redaktion/DE/Publikationen/Energie/energieeffizienz-in-zahlen-entwicklungen-und-trends-in-deutschland-2021.pdf?__blob=publicationFile&v=6

Bühler, F.; Petrović S, Ommen T, Holm FM, Pieper H, Elmegaard B. Identification and Evaluation of Cases for EH Utilisation Using GIS. Energies 11(4) (2018) 762. https://doi.org/10.3390/en11040762

Broberg Viklund S. Energy efficiency through industrial EH recovery—policy impacts. Energy Efficiency 8 (2015) p. 19–35. https://doi.org/10.1007/s12053-014-9277-3

Pehnt M, Bödeker J, Arens M, Jochem E, Idrissova F. The Utilisation of Industrial EH— Techno-Economic Potentials and Energy Political Realisation. Die Nutzung Industrieller Abwärme— Technisch-Wirtschaftliche Potentiale und Energiepolitische Umsetzung. 2010.

https://www.ifeu.de/fileadmin/uploads/Nutzung_industrieller_Abwaerme.pdf [Accessed: 20-October-2022]

Walsh C, Thornley P. Barriers to improving energy efficiency within the process industries with a focus on low grade heat utilization. Journal of Cleaner Production 23(1) (2012) p. 138–146. https://doi.org/10.1016/j.jclepro.2011.10.038

Miró L, Brückner S, Cabeza LF. Mapping and discussing Industrial Waste Heat (IWH) potentials for different countries. Renewable and Sustainable Energy Reviews 51 (2015) p. 847–855. https://doi.org/10.1016/j.rser.2015.06.035

Persson U, Möller B, Werner S. Heat Roadmap Europe: Identifying strategic heat synergy regions. Energy Policy 74 (2014) p. 663-681. https://doi.org/10.1016/j.enpol.2014.07.015

Bühler F, Petrovic S, Karlsson K, Elmegaard B. Industrial EH for DH in Denmark. Applied Energy 205 (2017) p. 991-1001. https://doi.org/10.1016/j.apenergy.2017.08.032

Pieper H, Lepiksaar K, Volkova A. GIS-based approach to Identifying Potential Heat Sources for Heat Pumps and Chillers Providing District Heating and Cooling. International Journal of Sustainable Energy Planning and Management 34 (2022) p. 29-44. https://doi.org/10.54337/ijsepm.7021

Brueckner S, Arbter R, Pehnt M, Laevemann E. Industrial waste heat potential in Germany - a bottom-up analysis. Energy Efficiency 10 (2017) p. 513–525. https://doi.org/10.1007/s12053-016-9463-6

Sundell D, Rämä M. A methodology for systematic mapping of heat sources in an urban area. Clean Technologies and Environmental Policy 24 (2022) p. 2991-3001. https://doi.org/10.1007/s10098-022-02401-2

Brückner S, Schäfers H, Peters I, Lävemann E. Using industrial and commercial waste heat for residential heat supply: A case study from Hamburg, Germany. Sustainable Cities and Society 13 (2014) p. 139–142. https://doi.org/10.1016/j.scs.2014.04.004

Tötzer T, Stollnberger R, Krebs R, Haas M. How can Urban Manufacturing contribute to more sustainable energy system in cities? International Journal of Sustainable Energy Planning and Management 24 (2019) p. 67-74. https://doi.org/10.5278/ijsepm.3347

Fang H, Xia J, Jiang Y. Key issues and solutions in a DH system using low-grade industrial waste heat. Energy 86 (2015) p. 589-602. https://doi.org/10.1016/j.energy.2015.04.052

Spirito G, Dénarié A, Cirillo VF, Casella F, Famiglietti J, Motta M. Energy mapping and DH as effective tools to decarbonize a city: Analysis of a case study in Northern Italy. Energy Reports 7(4) (2021) p. 254-262. https://doi.org/10.1016/j.egyr.2021.08.147

Pieper H, Mašatin V, Volkova A, Ommen T, Elmegaard B, Brix Markussen W. Modelling framework for integration of large-scale heat pumps in district heating using low-temperature heat sources: A case study of Tallinn, Estonia. International Journal of Sustainable Energy Planning and Management 20 (2019) p. 67-86. https://doi.org/10.5278/ijsepm.2019.20.6

Sameti M, Haghighat F. Optimization approaches in district heating and cooling thermal network. Energy and Buildings 140 (2017) p. 121–130. https://doi.org/10.1016/j.enbuild.2017.01.062

Halmschlager V, Birkelbach F, Hofmann R. Optimizing the utilization of excess heat for district heating in a chipboard production plant. Case Studies in Thermal Engineering. 25 (2021). 100900. https://doi.org/10.1016/j.csite.2021.100900

Energieatlas NRW, Wärmekataster.https://www.energieatlas.nrw.de/site/planungskarte_waerme. (Accessed: 26-August-2022)

Energieatlas NRW, Wärmekataster, Daten und Berechnungsgrundlagen. https://www.energieatlas.nrw.de/site/waerme/daten-und-berechnungsgrundlagen [Accessed: 20-October-2022]

Open NRW.https://open.nrw/dataset/407373a2-422c-469c-a7e9-06a62b4d7d9a [Accessed: 20-October-2022]

Nussbaumer T, Thalmann S, Jenni A, Ködel J, editors. Planungshandbuch Fernwärme. EnergieSchweiz, Bundesamt für Energie BFE. ISBN 3-908705-30-4. Bern; 2021. http://www.verenum.ch/Dokumente/PHB-FW_V1.3a.pdf

BDEW Bundesverband der Energie- und Wasserwirtschaft e.V., Verband kommunaler Unternehmen e.V. (VKU), GEODE – Groupement Européen des enterprises et Organismes de Distribution d’Énergie, EWIV. BDEW/VKU/GEODE – Leitfaden. Abwicklung von Standardlastprofilen Gas. Berlin;2016. https://www.bdew.de/media/documents/Leitfaden_20160630_Abwicklung-Standardlastprofile-Gas.pdf [Accessed: 20-October-2022]

Deutscher Wetterdienst. Klimadaten Deutschland. Messstation Düsseldorf https://www.dwd.de/DE/leistungen/klimadatendeutschland/klimadatendeutschland.html

Bundesverband der deutschen Gas- und Wasserwirtschaft (BGW). Praxisinformation P 2006/8 Gastransport/Betriebswirtschaft, Anwendung von Standardlastprofilen zur Belieferung nicht-leistungsgemessener Kunden, Bonn, 2006. https://www.stadtwerke-bramsche.de/ceasy/resource/?id=1283&download=1 [Accessed: 20-October-2022]

Meschede H, Hesselbach J, Child M, Breyer C. On the impact of probalistic weather data on the economically optimal design of renewable energy systems – a case study of La Gomera island. International Journal of Sustainable Energy Planning and Management 23 (2019) p. 15-26. http://doi.org/10.5278/ijsepm.3142

Energieatlas NRW. Excel Tabelle zu den Standorten der strom- und wärmeerzeugenden Anlagen in NRW. https://www.energieatlas.nrw.de/site/service/download_daten [Accessed: 20-October-2022]

MFA Register. https://www-lanuv-fis.nrw.de/mfa-register [Accessed: 20-October-2022]

Umweltbundesamt. DEHSt Deutsche Emissionshandelsstelle. Emissionspflichtige Anlagen in Deutschland 2021 (Stand 02.05.2022). https://www.dehst.de/SharedDocs/downloads/DE/anlagenlisten/2021.pdf?__blob=publicationFile&v=2 [Accessed: 20-October-2022]

Brückner S. Industrielle Abwärme in Deutschland – Bestimmung von gesichertem Aufkommen und technischer bzw. wirtschaftlicher Nutzbarkeit. Munich: Technical university of Munich; 2016.

https://mediatum.ub.tum.de/doc/1310042/1310042.pdf [Accessed: 20-October-2022]

Meuser, J. Abwärmepotenzial von Industrieöfen – Messtechnische Untersuchungen und Simulationsstudie. Kassel: Kassel University Press; 2019. https://dx.doi.org/doi:10.19211/KUP9783737607070

Danish Energy Agency. Technology Data for Generation of Electricity and District Heating. https://ens.dk/sites/ens.dk/files/Analyser/technology_data_catalogue_for_el_and_dh.pdf

[Accessed: 20-October-2022]

Meschede H. Analysis on the demand response potential in hotels with varying probabilistic influencing time-series for the Canary Islands. Renewable Energy 160 (2020) p. 1480-1491. https://doi.org/10.1016/j.renene.2020.06.024

Steck, M.H.E. Development and Assessment of Dispatching Algorithms of Virtual Power Plants. In German: Entwicklung und Bewertung von Algorithmen zur Einsatzplanerstellung virtueller Kraftwerke. Munich: Technical University of Munich; 2013. https://mediatum.ub.tum.de/doc/1115636/1115636.pdf [Accessed: 20-October-2022]

Schlosser F. Integration von Wärmepumpen zur Dekarbonisierung der industriellen Wärmeerzeugung. Kassel: Kassel University Press; 2020. http://dx.doi.org/doi:10.17170/kobra-202103023389

Bundesnetzagentur. SMARD Strommarktdaten. https://www.smard.de/home/downloadcenter/download-marktdaten#!?downloadAttributes=%7B%22selectedCategory%22:3,%22selectedSubCategory%22:8,%22selectedRegion%22:%22Amprion%22,%22from%22:1609455600000,%22to%22:1640991599999,%22selectedFileType%22:%22CSV%22%7D [Accessed: 20-October-2022]

BDEW Bundesverband der Energie- und Wasserwirtschaft e.V. https://www.bdew.de/presse/pressemappen/gaspreis-und-co-2-preis/ [Accessed: 20-October-2022]

The federal government of Germany. https://www.bundesregierung.de/breg-en/issues/climate-action/effectively-reducing-co2-1795850 [Accessed: 20-October-2022]

Juhrich K. CO2 Emission Factors for Fossil Fuels. Climate Change 28/2016. German Environment Agency (UBA). 2016. https://www.umweltbundesamt.de/sites/default/files/medien/1968/publikationen/co2_emission_factors_for_fossil_fuels_correction.pdf [Accessed: 20-October-2022]