Characteristics of household energy consumption in the shadow of the Russia-Ukraine war - a case study from Hungary

Main Article Content

Géza Tóth
https://orcid.org/0000-0002-9233-1899
Viktor Jáger
Zsolt Kovalszky
Pál Bóday
Dénes Ádám
Áron Kincses
Tekla Szép
https://orcid.org/0000-0001-9985-1881

Abstract

This study aims to identify the factors affecting household energy consumption by applying spatial econometric models. Our findings suggest that sharp energy price growth is followed by significant reductions in household energy consumption, but it is difficult to distinguish specific consumer groups. Weather conditions are of particular importance (compared to the EU average). The results highlight two things: a) the problem of obsolete housing stock and the need for energy efficiency improvements and b) low energy awareness of households, especially before the energy crisis. Furthermore, hotspots with higher per capita gas consumption are also identified in Hungary. The geographical dimension is crucial, and it is not possible to make general decisions on energy efficiency issues. Effective results can be achieved through spatially concentrated interventions.

Article Details

How to Cite
Tóth, G., Jáger, V., Kovalszky, Z., Bóday, P., Ádám, D., Kincses, Áron, & Szép, T. (2024). Characteristics of household energy consumption in the shadow of the Russia-Ukraine war - a case study from Hungary. International Journal of Sustainable Energy Planning and Management, 40, 55–74. https://doi.org/10.54337/ijsepm.8014
Section
Articles
Author Biographies

Géza Tóth, Statistical Advisor, Editor-in-Chief, Full professor

Statistical Advisor, Editor-in-Chief

Statistics Directorate, Hungarian Central Statistical Office

Budapest, Keleti Károly u. 5-7., H-1024, Hungary

Full professor

Institute of World and Regional Economics, Faculty of Economics, University of Miskolc

Miskolc-Egyetemváros, H-3515, Hungary

Viktor Jáger, Professional statistician

Professional statistician

Quality of Life Statistics Department, Hungarian Central Statistical Office Budapest, Keleti Károly u. 5-7., H-1024, Hungary

Zsolt Kovalszky, Head of department

Head of department

External Trade Statistics Department, Hungarian Central Statistical Office Budapest, Keleti Károly u. 5-7., H-1024, Hungary

Pál Bóday, Head of department

Head of department

Multidomain Statistics Department, Hungarian Central Statistical Office Budapest, Keleti Károly u. 5-7., H-1024, Hungary

Dénes Ádám, Senior analyst

Senior analyst

Statistics Directorate, Hungarian Central Statistical Office

Budapest, Keleti Károly u. 5-7., H-1024, Hungary

Áron Kincses, President

President

Statistics Directorate, Hungarian Central Statistical Office,

Budapest, Keleti Károly u. 5-7., H-1024, Hungary

Associate professor

Institute of World and Regional Economics, Faculty of Economics, University of Miskolc Miskolc-Egyetemváros, H-3515, Hungary

Tekla Szép, Associate professor, Research fellow

Associate Professor

Institute of World and Regional Economics, Faculty of Economics, University of Miskolc

Miskolc-Egyetemváros, H-3515, Hungary

Research Fellow

Women Researchers Council, Azerbaijan State University of Economics (UNEC), 6 Istiglaliyyat, Baku, Azerbaijan

References

M. C. LaBelle, “Energy as a weapon of war: Lessons from 50 years of energy interdependence,” Global Policy, vol. 14, no. 3, pp. 531–547, 2023, https://doi.org/10.1111/1758-5899.13235.

C. Weiner and T. Szép, “The Hungarian utility cost reduction programme: An impact assessment,” Energy Strategy Reviews, vol. 40, p. 100817, Mar. 2022, https://doi.org/10.1016/j.esr.2022.100817.

T. S. Szép, “The effects of utility cost reduction on residential energy consumption in Hungary – a decomposition analysis,” International Journal of Sustainable Energy Planning and Management, vol. 13, pp. 61–78, Sep. 2017, https://doi.org/10.5278/ijsepm.2017.13.5.

S. S. Qarnain, M. Sattanatha, and B. Sankaranarayanan, “Analysis of social inequality factors in implementation of building energy conservation policies using Fuzzy Analytical Hierarchy Process Methodology,” International Journal of Sustainable Energy Planning and Management, vol. 29, pp. 153–170, Sep. 2020, https://doi.org/10.5278/ijsepm.3616.

O. Odgaard and S. Djørup, “Review and experiences of price regulation regimes for district heating,” International Journal of Sustainable Energy Planning and Management, vol. 29, pp. 127–140, Sep. 2020, https://doi.org/10.5278/ijsepm.3824.

E. Ó Broin, J. Nässén, and F. Johnsson, “The influence of price and non-price effects on demand for heating in the EU residential sector,” Energy, vol. 81, pp. 146–158, Mar. 2015, https://doi.org/10.1016/j.energy.2014.12.003.

S.-J. Kim and D.-Y. Park, “Study on the Variation in Heating Energy Based on Energy Consumption from the District Heating System, Simulations and Pattern Analysis,” Energies, vol. 15, no. 11, Art. no. 11, Jan. 2022, https://doi.org/10.3390/en15113909.

L. Liu, J. Huang, and H. Li, “Estimating the real shock to the economy from COVID-19: The example of electricity use in China,” Technological and Economic Development of Economy, vol. 28, no. 5, Art. no. 5, Sep. 2022, https://doi.org/10.3846/tede.2022.17027.

E. Kawka and K. Cetin, “Impacts of COVID-19 on residential building energy use and performance,” Building and Environment, vol. 205, p. 108200, Nov. 2021, https://doi.org/10.1016/j.buildenv.2021.108200.

V. Todeschi, K. Javanroodi, R. Castello, N. Mohajeri, G. Mutani, and J.-L. Scartezzini, “Impact of the COVID-19 pandemic on the energy performance of residential neighborhoods and their occupancy behavior,” Sustainable Cities and Society, vol. 82, p. 103896, Jul. 2022, https://doi.org/10.1016/j.scs.2022.103896.

F. Mandys, “Household-specific Energy Expenditure and Inflation in the Czech Republic,” vol. 4, p. 17, 2022.

B. Zakeri et al., “Pandemic, War, and Global Energy Transitions,” Energies, vol. 15, no. 17, Art. no. 17, Jan. 2022, https://doi.org/10.3390/en15176114.

G. Horváth, P. Kotek, A. Simonovits, and B. Takácsné Tóth, “Az energiaárak támogatása Magyarországon – egy egyszerű modell,” Közgazdasági Szemle, vol. 70, no. 6, pp. 589–612, Jun. 2023, https://doi.org/10.18414/KSZ.2023.6.589.

F. V. Lavín, L. Dale, M. Hanemann, and M. Moezzi, “The impact of price on residential demand for electricity and natural gas,” Climatic Change, vol. 109, no. 1, pp. 171–189, Dec. 2011, https://doi.org/10.1007/s10584-011-0297-0.

M. A. Khalil and M. R. Fatmi, “How residential energy consumption has changed due to COVID-19 pandemic? An agent-based model,” Sustainable Cities and Society, vol. 81, p. 103832, Jun. 2022, https://doi.org/10.1016/j.scs.2022.103832.

Z. Csereklyei, “Price and income elasticities of residential and industrial electricity demand in the European Union,” Energy Policy, vol. 137, p. 111079, Feb. 2020, https://doi.org/10.1016/j.enpol.2019.111079.

G. Trotta, A. R. Hansen, and S. Sommer, “The price elasticity of residential district heating demand: New evidence from a dynamic panel approach,” Energy Economics, vol. 112, p. 106163, Aug. 2022, https://doi.org/10.1016/j.eneco.2022.106163.

R. Fazeli, B. Davidsdottir, and J. H. Hallgrimsson, “Residential energy demand for space heating in the Nordic countries: Accounting for interfuel substitution,” Renewable and Sustainable Energy Reviews, vol. 57, pp. 1210–1226, May 2016, https://doi.org/10.1016/j.rser.2015.12.184.

K. Burns, “An investigation into changes in the elasticity of U.S. residential natural gas consumption: A time-varying approach,” Energy Economics, vol. 99, p. 105253, Jul. 2021, https://doi.org/10.1016/j.eneco.2021.105253.

S. Matsumoto, “How will a carbon tax affect household energy source combination?,” Energy Strategy Reviews, vol. 40, p. 100823, Mar. 2022, https://doi.org/10.1016/j.esr.2022.100823.

P. Kotek, G. Szajkó, A. Mészégetőné Keszthelyi, and L. Szabó, “Vihar a rezsiben - A REKK elemzése a 2013. januári 10%-os rezsicsökkentésről - REKK,” REKK, I., 2013. Accessed: Feb. 13, 2023. [Online]. Available: https://rekk.hu/cikk/64/vihar-a-rezsiben

P. Bertoldi, “Policies for energy conservation and sufficiency: Review of existing policies and recommendations for new and effective policies in OECD countries,” Energy and Buildings, vol. 264, p. 112075, Jun. 2022, https://doi.org/10.1016/j.enbuild.2022.112075.

Eurostat, “Database - Eurostat.” Accessed: Jul. 18, 2022. [Online]. Available: https://ec.europa.eu/eurostat/data/database

HEA, “Official Statistics,” Hungarian Energy and Public Utility Regulatory Authority. Accessed: Feb. 09, 2023. [Online]. Available: http://www.mekh.hu/home

HCSO, “Hungarian Central Statistical Office - Database,” Hungarian Central Statistical Office. Accessed: Feb. 06, 2023. [Online]. Available: https://www.ksh.hu/?lang=en

S. Tsemekidi Tzeiranaki et al., “Analysis of the EU Residential Energy Consumption: Trends and Determinants,” Energies, vol. 12, no. 6, Art. no. 6, Jan. 2019, https://doi.org/10.3390/en12061065.

R. Haas, “Energy efficiency indicators in the residential sector: What do we know and what has to be ensured?,” Energy Policy, vol. 25, no. 7, pp. 789–802, Jun. 1997, https://doi.org/10.1016/S0301-4215(97)00069-4.

C. Achão and R. Schaeffer, “Decomposition analysis of the variations in residential electricity consumption in Brazil for the 1980–2007 period: Measuring the activity, intensity and structure effects,” Energy Policy, vol. 37, no. 12, pp. 5208–5220, Dec. 2009, https://doi.org/10.1016/j.enpol.2009.07.043.

W. Chung, M. S. Kam, and C. Y. Ip, “A study of residential energy use in Hong Kong by decomposition analysis, 1990–2007,” Applied Energy, vol. 88, no. 12, pp. 5180–5187, Dec. 2011, https://doi.org/10.1016/j.apenergy.2011.07.030.

Z. Liu and T. Zhao, “Contribution of price/expenditure factors of residential energy consumption in China from 1993 to 2011: A decomposition analysis,” Energy Conversion and Management, vol. 98, pp. 401–410, Jul. 2015, https://doi.org/10.1016/j.enconman.2015.04.008.

G. Du, W. Lin, C. Sun, and D. Zhang, “Residential electricity consumption after the reform of tiered pricing for household electricity in China,” Applied Energy, vol. 157, pp. 276–283, Nov. 2015, https://doi.org/10.1016/j.apenergy.2015.08.003.

X. Zhao, N. Li, and C. Ma, “Residential energy consumption in urban China: A decomposition analysis,” Energy Policy, vol. 41, pp. 644–653, Feb. 2012, https://doi.org/10.1016/j.enpol.2011.11.027.

S. Gendebien, E. Georges, S. Bertagnolio, and V. Lemort, “Methodology to characterize a residential building stock using a bottom-up approach: a case study applied to Belgium,” International Journal of Sustainable Energy Planning and Management, vol. 4, pp. 71–88, 2014, https://doi.org/10.5278/ijsepm.2014.4.7.

Hungarian Independent Transmission Operator Company Ltd., “Website.” Accessed: Feb. 11, 2023. [Online]. Available: https://mvm.hu/en/Tevekenysegunk/AtvitelRendszerIranyitas

HCSO, “Dissemination Database.” Accessed: Feb. 11, 2023. [Online]. Available: https://statinfo.ksh.hu/Statinfo/themeSelector.jsp?&lang=en

L. M. Garcia-Cerrutti, “Estimating elasticities of residential energy demand from panel county data using dynamic random variables models with heteroskedastic and correlated error terms,” Resource and Energy Economics, vol. 22, no. 4, pp. 355–366, Oct. 2000, https://doi.org/10.1016/S0928-7655(00)00028-2.

E. Chomać-Pierzecka, A. Sobczak, and D. Soboń, “The Potential and Development of the Geothermal Energy Market in Poland and the Baltic States—Selected Aspects,” Energies, vol. 15, no. 11, Art. no. 11, Jan. 2022, https://doi.org/10.3390/en15114142.

A. Stopochkin and I. Sytnik, “Algorithm for Rapid Estimation of the Performance of Small Rooftop Solar PV Use by Households,” Energies, vol. 15, no. 11, Art. no. 11, Jan. 2022, https://doi.org/10.3390/en15113910.

A. Varga, “TÉRÖKONOMETRIA,” STATISZTIKAI SZEMLE, vol. 80, no. 4, pp. 354–370, 2002.

P. a. P. Moran, “The Interpretation of Statistical Maps,” Journal of the Royal Statistical Society: Series B (Methodological), vol. 10, no. 2, pp. 243–251, 1948, https://doi.org/10.1111/j.2517-6161.1948.tb00012.x.

T. Dusek, A területi elemzések alapjai. in Regionális Tudományi Tanulmányok 10. Budapest: ELTE Regionális Földrajzi Tanszék – MTA–ELTE Regionális Tudományi Kutatócsoport, 2004.

Takarék Index, “Csaknem 20 ezer milliárd forintba kerülne a magyar lakásállomány energetikai felújítása,” 2022. [Online]. Available: https://www.takarekindex.hu/sw/static/file/10_Energi2_felujitasok.pdf

R. Nesbakken, “Price sensitivity of residential energy consumption in Norway,” Energy Economics, vol. 21, no. 6, pp. 493–515, Dec. 1999, https://doi.org/10.1016/S0140-9883(99)00022-5.

C. Gong, S. Yu, K. Zhu, and A. Hailu, “Evaluating the influence of increasing block tariffs in residential gas sector using agent-based computational economics - ScienceDirect,” Energy Policy, vol. 92, pp. 334–347, 2016, https://doi.org/10.1016/j.enpol.2016.02.014.

M. T. García-Álvarez, “An assessment of supply-side and demand-side policies in EU-28 household electricity prices,” International Journal of Sustainable Energy Planning and Management, vol. 26, pp. 5–18, Apr. 2020, https://doi.org/10.5278/ijsepm.3417.

M. LaBelle, “Expanding opportunities: Strategic buying of utilities in new EU member states,” Energy Policy, vol. 37, no. 11, pp. 4672–4678, Nov. 2009, https://doi.org/10.1016/j.enpol.2009.06.022.

M. Váry, “Számít-e a földrajzi elhelyezkedés? A nyugat-európai régiók fejlettségének térökonometriai vizsgálata,” Közgazdasági Szemle, vol. 64, no. 3, pp. 238–266, Mar. 2017, https://doi.org/10.18414/KSZ.2017.3.238.

A. Blackburne, “Europe pins hopes on mild winter to avoid worse energy crisis in 2023,” S&P Global Market Intelligence. Accessed: Feb. 17, 2023. [Online]. Available: https://www.spglobal.com/marketintelligence/en/news-insights/latest-news-headlines/europe-pins-hopes-on-mild-winter-to-avoid-worse-energy-crisis-in-2023-72880202

T. Szép, T. Pálvölgyi, and É. Kármán-Tamus, “‘Landscape’ of energy burden: role of solid fuels in Central and Eastern European residential heating,” International Journal of Sustainable Energy Planning and Management, vol. 37, pp. 61–74, Apr. 2023, https://doi.org/10.54337/ijsepm.7503.

ODYSSEE-MURE, “Heating consumption per m2 | Heating energy consumption.” Accessed: Dec. 31, 2022. [Online]. Available: https://www.odyssee-mure.eu/publications/efficiency-by-sector/households/heating-consumption-per-m2.html

B. Ata, P. Pakrooh, A. Barkat, R. Benhizia, and J. Pénzes, “Inequalities in Regional Level Domestic CO2 Emissions and Energy Use: A Case Study of Iran,” Energies, vol. 15, no. 11, Art. no. 11, Jan. 2022, https://doi.org/10.3390/en15113902.

REKK, “A rezsicsökkentés szabályváltozásának hatása a magyar lakóépületszektor gázfogyasztására,” 2022. Accessed: Feb. 21, 2024. [Online]. Available: https://rekk.hu/publikacio/131/a-rezsicsokkentes-szabalyvaltozasanak-hatasa-a-magyar-lakoepuletszektor-gazfogyasztasara

MNB, “A ‘Miből élünk?’ háztartási vagyonfelmérés eredményei.” Accessed: Jan. 02, 2023. [Online]. Available: https://sta.mnb.hu/Reports/powerbi/STA-PSZF/HaztVagyon_HU?rs:embed=true

S. Bouzarovski and S. Tirado Herrero, “The energy divide: Integrating energy transitions, regional inequalities and poverty trends in the European Union,” European Urban and Regional Studies, vol. 24, no. 1, pp. 69–86, Jan. 2017, https://doi.org/10.1177/0969776415596449.

S. Bouzarovski and N. Simcock, “Spatializing energy justice,” Energy Policy, vol. 107, no. C, pp. 640–648, 2017. https://doi.org/10.1016/j.enpol.2017.03.064