Techno-Economic and Sustainable Challenges for EV Adoption in India: Analysis of the Impact of EV Usage Patterns and Policy Recommendations for Facilitating Seamless Integration

Main Article Content

Soumya Sathyan
V Ravikumar Pandi
Deepa K
Sheik Mohammed Sulthan

Abstract

This paper explores the intricate challenges that are impeding the widespread adoption of Electric Vehicles (EVs) and explores the concerted efforts of the research community towards addressing these obstacles. The surge in interest surrounding EVs as a sustainable transportation alternative is undeniable, yet several hurdles persist in hindering their mass acceptance. From limitations in battery technology and charging infrastructure to concerns over range anxiety and manufacturing sustainability, these challenges form a multifaceted barrier. However, the research community has been actively engaged in tackling each issue with innovative solutions. Advancements in battery chemistry and energy storage, coupled with improvements in charging networks and smart grid integration, are poised to reshape the EV landscape. Moreover, studies on user behavior, public policy, and lifecycle analysis are contributing to the development of holistic strategies for enhancing EV adoption. By delving into these challenges and the ongoing research endeavors, this paper sheds light on the evolving pathway towards a future where EVs can thrive as a mainstream mode of transportation. Also, an analysis is conducted to evaluate the economic viability of EVs based on daily range considerations, with the objective of determining which category of users would benefit most from adopting EVs. Furthermore, policies are proposed that are aimed at establishing a harmonious and balanced EV ecosystem.

Article Details

How to Cite
Sathyan, S., V Ravikumar Pandi, Deepa K, & Sheik Mohammed Sulthan. (2024). Techno-Economic and Sustainable Challenges for EV Adoption in India: Analysis of the Impact of EV Usage Patterns and Policy Recommendations for Facilitating Seamless Integration. International Journal of Sustainable Energy Planning and Management, 40, 75–95. https://doi.org/10.54337/ijsepm.8048
Section
Articles

References

Yuni D. N., Ezenwa N., Urama N. E., Tingum E. N., Mohlori-Sepamo K. Renewable Energy and Inclusive Economic Development: An African Case Study. International Journal of Sustainable Energy Planning and Management, 39 (2023) p. 23–35. https://doi.org/10.54337/ijsepm.7413.

P. Aruna, V. Vasan Prabhu. Evolution and recent advancements in Electric Vehicle (EV) technology. Emerging Solutions for e-Mobility and Smart Grids: Select Proceedings of ICRES 2020, Singapore, Springer Proceeding in Energy (2021) p. 91–109. https://doi.org/10.1007/978-981-16-0719-6_9.

Al Hasibi, R. A., & Bawan, E. K. An Analysis of the Impact of the Covid-19 Pandemic on the Implementation of Renewable Energy in the Supply of Electricity. International Journal of Sustainable Energy Planning and Management, 39 (2023), p. 3–21. https://doi.org/10.54337/ijsepm.7659.

International Energy Agency. (2023). Global EV Outlook 2023. Retrieved from https://www.iea.org/reports/global-ev-outlook-2023

India Electric Vehicle Report 2023. Retrieved from https://www.bain.com/insights/india-electric-vehicle-report-2023/.

India’s Electric Vehicle sales Trend. Retrieved from https://evreporter.com/indias-electric-vehicle-sales-trend-december-2023/.

Top 10 EVs sold in India. Retrieved from https://www.drivespark.com/four-wheelers/2023/top-10-electric-vehicles-q2-sales-038789.html.

India Electric Vehicle Market Overview Report 2023. Retrieved from https://indiaesa.info/resources/industry-reports/4523-2023-india-electric-vehicle-market-overview-report.

International Energy Agency. (2023). Global EV Outlook 2023. Retrieved from https://www.iea.org/reports/global-ev-outlook-2023.

Council on energy, environment and water, Retrieved from https://www.ceew.in/publications/mapping-indias-energy-subsidies-2021

S. Goel, R. Sharma, A. K. Rathore. A review on barrier and challenges of Electric Vehicle in India and vehicle to grid optimization. Transportation Engineering 4 (2021) p. 100057. https://doi.org/10.1016/j.treng.2021.100057.

J. A. Sanguesa, V. Torres-Sanz, P. Garrido, F. J. Martinez, J. M. Marquez-Barja. A review on Electric Vehicles: Technologies and challenges. Smart Cities 4(1) (2021) p. 372–404. https://doi.org/10.3390/smartcities4010022.

V. S. Patyal, R. Kumar, S. Kushwah. Modeling barriers to the adoption of Electric Vehicles: An Indian perspective. Energy 237 (2021) p. 121554. https://doi.org/10.1016/j.energy.2021.121554.

G. Aswani, V. S. Bhadoria, J Singh. Electric Vehicles in India: Opportunities and challenges. 2018 International Conference on Automation and Computational Engineering (ICACE), Greater Noida, India (2018) p. 65–71. https://doi:10.1109/ICACE.2018.8687043.

P. K. Tarei, P. Chand, H. Gupta. Barriers to the adoption of Electric Vehicles: Evidence from India. Journal of Cleaner Production 291 (2021) p. 125847. https://doi.org/10.1016/j.jclepro.2021.125847.

S. Sathyan, J. J. Peedikayil, V. Ravikumar Pandi, S. R. Salkuti. Two-layered machine learning approach for sentiment analysis of tweets related to Electric Vehicles. 2023 International Conference on Innovations in Engineering and Technology (ICIET), Muvattupuzha, India (2023) p. 1–6. https://doi:10.1109/ICIET57285.2023.10220717.

Lee, J. H., Chakraborty, D., Hardman, S. J., & Tal, G. Exploring electric vehicle charging patterns: Mixed usage of charging infrastructure. Transportation Research Part D: Transport and Environment, 79 (2020), p. 102249. https://doi.org/10.1016/j.trd.2020.102249.

EV Database Data Services. Retrieved from https://ev-database.org/data-services-api.

Masias A. Lithium Ion Battery Design for Transportation. Springer International Publishing: Behavior of Lithium-Ion Batteries in Electric Vehicles: Cham, Switzerland (2018) p. 1–34. https://www.springerprofessional.de/en/lithium-ion-battery-design-for-transportation/15457626.

Xie. W., Liu. X., He. R., Li. Y., Gao. X., Li. X., Peng. Z., Feng. S., Feng. X., Yang. S. Challenges and opportunities toward fast-charging of lithium-ion batteries. Journal of Energy Storage 32 (2020) p. 101837 . https://doi.org/10.1016/j.est.2020.101837.

Anusha Pradhan, Rajashekar Badam, Ryoya Miyairi, Noriyuki Takamori, Noriyoshi Matsumi. Extreme Fast Charging Capability in Graphite Anode via a Lithium Borate Type Biobased Polymer as Aqueous Polyelectrolyte Binder. ACS Materials Letters, 5 (2) (2023) p. 413. https://pubs.acs.org/doi/full/10.1021/acsmaterialslett.2c00999.

C. Chen, S. Plunkett, M. Salameh, S. Stoyanov, S. Al-Hallaj and M. Krishnamurthy. Enhancing the Fast Charging Capability of High-Energy-Density Lithium-Ion Batteries: A Pack Design Perspective. IEEE Electrification Magazine, vol. 8, no. 3 (2020) p. 62-69. https://doi.org/10.1109/MELE.2020.3005700.

X.-G. Yang, G. Zhang, S. Ge, C.-Y. Wang. Fast charging of lithium-ion batteries at all temperatures. Proceedings of the National Academy of Sciences, USA, 115(28) (2018) p. 7266–7271. https://doi: 10.1073/pnas.1807115115.

D.-H. Kim, T.-W. Noh, B. K. Lee. Maximum fast-charging current estimation algorithm considering temperature of lithium-ion batteries in Electrical Vehicles. 2022 IEEE Applied Power Electronics Conference and Exposition (APEC), Houston, TX, USA (2022) p. 1148–1153. https://doi.org/10.1109/APEC43599.2022.9773552.

Y. S. Odeh, I. S. Elkahlout, P. V. Naeimi, E. A. ElGhanam, M. S. Hassan, A. H. Osman. Planning and allocation of dynamic wireless charging infrastructure for Electric Vehicles. 2022 9th International Conference on Electrical and Electronics Engineering (ICEEE), Alanya, Turkey (2022) p. 306–310. https://doi.org/10.1109/ICEEE55327.2022.9772562.

Amjad M., Farooq-i-Azam M., Ni Q., Dong M., Ansari E. A. Wireless charging systems for electric vehicles. Renewable and Sustainable Energy Reviews, 167 (2022) p. 112730. https://doi.org/10.1016/j.rser.2022.112730.

Danjuma J., Abdelaziz A. Y., Abdel Aleem, S. H. Human Exposure Influence Analysis for Wireless Electric Vehicle Battery Charging. Clean Technologies, 4(3) (2022) p. 785-805. https://doi.org/10.3390/cleantechnol4030048.

A. Moeini, S. Wang. Design of fast charging technique for Electrical Vehicle charging stations with grid-tied cascaded H-bridge multilevel converters. 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA (2018) p. 3583–3590. https://doi.org/10.1109/APEC.2018.8341621.

N. Ghaeminezhad, M. Monfared. Charging control strategies for lithium-ion battery packs: Review and recent developments. IET Power Electronics 15(5) (2022) p. 349– 367. https://doi.org/10.1049/pel2.12219.

D. Kumar, M. Das. Optimized Charging Method for Fast Charging of EV Batteries. IECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Society, Singapore, Singapore (2023) p. 1-6. https://doi.org/ 10.1109/IECON51785.2023.10312699.

F. Ahmad, I. Ashraf, A. Iqbal, M. Bilal. Electric vehicle fast charging station location and capacity planning model using butterfly optimization algorithm. 2023 International Conference on Recent Advances in Electrical, Electronics & Digital Healthcare Technologies (REEDCON), New Delhi, India (2023) p. 145–150. https://doi.org/10.1109/REEDCON57544.2023.10151370.

S. Schoenberg, F. Dressler. Reducing waiting times at charging stations with adaptive Electric Vehicle route planning. IEEE Transactions on Intelligent Vehicles 8(1) (2022) p. 95–107. https://doi.org/10.1109/TIV.2022.3140894.

Vigneshkumar B, Anu. G. Kumar. Optimal Sizing and Operation of Solar PV-powered EV Battery Swapping Station for Indian Petroleum Retail Outlet. 2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT), Kannur, India, (2022), p. 442-447. https://doi.org/10.1109/ICICICT54557.2022.9917711.

Ahmad F., Alam M. S., Alsaidan I. S., Shariff S. M. (2020). Battery swapping station for electric vehicles: Opportunities and challenges. IET Smart Grid 3(3) (2020) p. 280-286. https://doi.org/10.1049/iet-stg.2019.0059.

Sutopo W., Prianjani D., Fahma F., Pujiyanto E., Rasli A., Kowang T. O. Open Innovation in Developing an Early Standardization of Battery Swapping According to the Indonesian National Standard for Electric Motorcycle Applications. Journal of Open Innovation: Technology, Market, and Complexity 8(4) (2022) p. 219. https://doi.org/10.3390/joitmc8040219.

H. Wu, G. K.-H. Pang, K. L. Choy, H. Y. Lam. A charging-scheme decision model for Electric Vehicle battery swapping station using varied population evolutionary algorithms. Applied Soft Computing 61 (2017) p. 905–920. https://doi.org/10.1016/j.asoc.2017.09.008.

Adegbohun F., Von Jouanne A., Lee K. Y. Autonomous Battery Swapping System and Methodologies of Electric Vehicles. Energies 12(4) (2018) p. 667. https://doi.org/10.3390/en12040667.

N. A. El-Taweel, A. Ayad, H. E. Farag, M. Mohamed. Optimal Energy Management for battery swapping based Electric bus fleets with consideration of grid ancillary services provision. IEEE Transactions on Sustainable Energy 14(2) (2022) p. 1024–1036. https://doi.org/10.1109/TSTE.2022.3232696.

L. F. Grisales-Noreña, O. D. Montoya, C. A. Ramos-Paja. An Energy Management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm. Journal of Energy Storage 29 (2020) p. 101488. https://doi.org/10.1016/j.est.2020.101488.

P. S. Babu, S. Subhash, K. Ilango. SoC estimation of Li-ion battery using hybrid artificial neural network and adaptive neuro-fuzzy inference system. International Conference on Intelligent Solutions for Smart Grids & Smart Cities, Kollam, India, Lecture Notes in Electrical Engineering, Springer 1022 (2022) p. 389–405. https://doi.org/10.1007/978-981-99-0915527.

H. Behi, D. Karimi, T. Kalogiannis, J. He, M. S. Patil, J.-D. Muller, A. Haider, J. Van Mierlo, M. Berecibar. Advanced hybrid thermal management system for LTO battery module under fast charging. Case Studies in Thermal Engineering 33 (2022) p. 101938. https://doi.org/10.1016/j.csite.2022.101938.

S. Sabatini, M. Corno. Battery aging management for fully Electric Vehicles. 2018 European Control Conference (ECC), Limassol, Cyprus (2018) p. 231–236. https://doi.org/10.23919/ECC.2018.8550592.

Olmos J., Van Mierlo J., Berecibar M. Fast Charging Impact on the Lithium-Ion Batteries’ Lifetime and Cost-Effective Battery Sizing in Heavy-Duty Electric Vehicles Applications. Energies 15(4) (2021) p. 1278. https://doi.org/10.3390/en15041278.

Xie W., Liu X., He R., Li Y., Gao X., Li X., Peng Z., Feng S., Feng X., Yang S. Challenges and opportunities toward fast-charging of lithium-ion batteries. Journal of Energy Storage 32 (2020) p. 101837. https://doi.org/10.1016/j.est.2020.101837.

Mathieu R., Briat O., Gyan P., Vinassa J. Comparison of the impact of fast charging on the cycle life of three lithium-ion cells under several parameters of charge protocol and temperatures. Applied Energy 283 (2021) p. 116344. https://doi.org/10.1016/j.apenergy.2020.116344.

Yang H., Hong J., Liang F., Xu X.. Machine learning-based state of health prediction for battery systems in real-world electric vehicles. Journal of Energy Storage, 66 (2023) p. 107426. https://doi.org/10.1016/j.est.2023.107426.

Celik B., Sandt R., Dos Santos L. C., Spatschek R. Prediction of Battery Cycle Life Using Early-Cycle Data, Machine Learning and Data Management. Batteries. 8(12) (2022) p. 266. https://doi.org/10.3390/batteries8120266.

A. Arif, M. Hassaan, M. Abdullah, A. Nadeem, N. Arshad. Estimating Battery State of Health using Machine Learning, 2022 10th International Conference on Smart Grid and Clean Energy Technologies (ICSGCE), Kuala Lumpur, Malaysia (2022) p. 72-77, doi: 10.1109/ICSGCE55997.2022.9953596.

A. Houbbadi, E. Redondo-Iglesias, S. Pelissier, R. Trigui, T. Bouton. Smart charging of electric bus fleet minimizing battery degradation at extreme temperature conditions. 2021 IEEE Vehicle Power and Propulsion Conference (VPPC), Gijon, Spain (2021) p. 1-6, doi: 10.1109/VPPC53923.2021.9699367.

Schoch J., Gaerttner J., Schuller A., Setzer T. Enhancing electric vehicle sustainability through battery life optimal charging. Transportation Research Part B: Methodological, 112 (2018) p. 1-18. https://doi.org/10.1016/j.trb.2018.03.016.

E. Martinez-Laserna, E. Sarasketa-Zabala, I. V. Sarria, D.-I. Stroe, M. Swierczynski, A. Warnecke, J.-M. Timmermans, S. Goutam, N. Omar, P. Rodriguez. Technical viability of battery second life: A study from the ageing perspective. IEEE Transactions on Industry Applications 54(3) (2018) p. 2703–2713. https://doi.org/10.1109/TIA.2018.2801262.

M. H. S. M. Haram, J. W. Lee, G. Ramasamy, E. E. Ngu, S. P. Thiagarajah, Y. H. Lee. Feasibility of utilizing second-life EV batteries: Applications, lifespan, economics, environmental impact, assessment and challenges. Alexandria Engineering Journal 60(5) (2021) p. 4517-4536. https://doi.org/10.1016/j.aej.2021.03.021.

Y. Wang, B. Tang, M. Shen, Y. Wu, S. Qu, Y. Hu, Y. Feng. Environmental impact assessment of second life and recycling for LiFePo4 power batteries in China. Journal of Environmental Management 314 (2022) p. 115083. https://doi.org/10.1016/j.jenvman.2022.115083.

J. Wu, Y. Xue, D. Xie, K. Li, F. Wen, J. Zhao, Y. Ding. Questionnaire designing, multiagent modeling, and analyzing of EV users’ traveling willingness. 10th International Conference on Advances in Power System Control, Operation & Management (APSCOM 2015), Hong Kong, IET (2015). https://doi.org/10.1049/ic.2015.0235.

EV Database Data Services. Retrieved from https://ev-database.org/data-services-api.

Zhang, Y., Hua Y., Kang A., He J., Jia M., Chiang Y. Optimal and efficient planning of charging stations for electric vehicles in urban areas: Formulation, complexity and solutions. Expert Systems With Applications, 230 (2023) p. 120442. https://doi.org/10.1016/j.eswa.2023.120442.

Duarte G., Silva A., Baptista P. Assessment of wireless charging impacts based on real-world driving patterns: Case study in Lisbon, Portugal. Sustainable Cities and Society, 71 (2021) p. 102952. https://doi.org/10.1016/j.scs.2021.102952.

Eissa M. A., Chen P. Machine Learning-based Electric Vehicle Battery State of Charge Prediction and Driving Range Estimation for Rural Applications. IFAC-PapersOnLine, 56(3) (2022) p. 355-360. https://doi.org/10.1016/j.ifacol.2023.12.050.

L. Zhao, W. Yao, Y. Wang, J. Hu. Machine Learning-Based Method for Remaining Range Prediction of Electric Vehicles. IEEE Access, vol. 8 (2020) p. 212423-212441. doi: 10.1109/ACCESS.2020.3039815.

Fazeli, S. S., Venkatachalam, S., & Smereka, J. M. (2023). Efficient algorithms for electric vehicles’ min-max routing problem. Sustainable Operations and Computers, 5, 15-28. https://doi.org/10.1016/j.susoc.2023.07.002.

D. Chandran, M. Joshi. Electric Vehicles and driving range extension-a literature review. Advances in Automobile Engineering 2(5) (2016) p. 1–10. https://doi.org/10.4172/2167-7670.1000154.

X. He, Y. Hu. Optimal mileage of electric vehicles considering range anxiety and charging times. World Electric Vehicle Journal 14(1) (2023), p. 21. https://doi.org/10.3390/wevj14010021.

V. Vendan, A. Chaudhary. Smart EV charging to mitigate range anxiety in VANET backbone guided by named data networking and blockchain. 2023 International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE), IEEE (2023) p. 1–7. https://doi.org/10.1109/ICDCECE57866.2023.10151066.

S. Tummapudi, T. Mohammed, R. K. Peetala, S. Chilla, P. P. Bollavarapu. Solar-powered wireless charging station for Electric Vehicles. 2023 International Conference on Power, Instrumentation, Energy and Control (PIECON), (2023) p. 1–4. https://doi.org/10.1109/PIECON56912.2023.10085752.

M. Campaña, E. Inga. Optimal allocation of public charging stations based on traffic density in smart cities. 2019 IEEE Colombian Conference on Applications in Computational Intelligence (ColCACI), Barranquilla, Colombia (2019) p. 1–6. https://doi.org/10.1109/ColCACI.2019.8781986.

B. Faridpak, H. F. Gharibeh, M. Farrokhifar, D. Pozo. Two-step LP approach for optimal placement and operation of EV charging stations. 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), (2019) p. 1–5. https://doi.org/10.1109/ISGTEurope.2019.8905469.

Q. Yan, B. Zhang, M. Kezunovic. Optimized operational cost reduction for an EV charging station integrated with battery energy storage and PV generation. IEEE Transactions on Smart Grid 10(2) (2018) p. 2096–2106. https://doi.org/10.1109/TSG.2017.2788440.

M. Draz, S. Albayrak. A power demand estimator for Electric Vehicle charging infrastructure. 2019 IEEE Milan Power Tech, Milan, Italy, (2019) p. 1–6. https://doi.org/10.1109/PTC.2019.8810659.

Chamberlain K. Standardisation of UK Electric Vehicle Charging Protocol, Payment and Charge Point Connection. World Electric Vehicle Journal, 12(2) (2021) p. 63. https://doi.org/10.3390/wevj12020063.

L. Zhang, Z. Zhao, H. Xin, J. Chai, G. Wang. Charge pricing model for Electric Vehicle charging infrastructure public-private partnership projects in China: A system dynamics analysis. Journal of Cleaner Production 199 (2018) p. 321–333. https://doi.org/10.1016/j.jclepro.2018.07.169.

S. Singh, J. Jindel, V. A. Tikkiwal, M. Verma, A. Gupta, A. Negi, A. Jain. Electric Vehicles for low-emission urban mobility: Current status and policy review for India. International Journal of Sustainable Energy 41(9) (2022) p. 1323–1359. https://doi.org/10.1080/14786451.2022.2050232.

Bureau of Energy Efficiency, Ministry of Power. Retrieved from https://beeindia.gov.in/en/publications#id-regular-annual-reports.

M. Van der Steen, R. Van Schelven, R. Kotter, M. J. van Twist, P. Van Deventer Mpa. EV policy compared: an International comparison of governments’ policy strategy towards e-mobility. e-mobility in Europe: trends and good practice, (2015) p. 27–53. https://doi.org/10.1007/978-3-319-13194-8_2.

A. Ajanovic, R. Haas. Electric Vehicles: solution or new problem?. Environment, Development and Sustainability, 20 (2018) p. 7–22. https://doi.org/10.1007/s10668-018-0190-3.

F. Degen, O. Krätzig. Modeling large-scale manufacturing of lithium-ion battery cells: Impact of new technologies on production economics. IEEE Transactions on Engineering Management (2023) p. 1-17. https://doi.org/10.1109/TEM.2023.3264294.

A. A. Asif, R. Singh. Further cost reduction of battery manufacturing. Batteries 3(2) (2017) p. 17. https://doi.org/10.3390/batteries3020017.

P. A. Nelson, S. Ahmed, K. G. Gallagher, D. W. Dees. Cost savings for manufacturing lithium batteries in a flexible plant. Journal of Power Sources 283(2015), p. 506–516. https://doi.org/10.1016/j.jpowsour.2015.02.142.

H. Karaki, M. Thomitzek, T. Obermann, C. Herrmann, D. Schröder. Optimizing the microstructure and processing parameters for lithium-ion battery cathodes: A use case scenario with a digital manufacturing platform. Energy Technology 11(5) (2023) p. 2201032. https://doi.org/10.1002/ente.202201032.

Can electric vehicles find space in India’s used car market?. Clean Mobility Shift, Climate Trends. Retrieved from https://cleanmobilityshift.com/ecosystem/can-electric-vehicles-find-space-in-indias-used-car-market/.

O. Meyer, C. Weihs, S. Mähr, H.-Y. Tran, M. Kirchhof, S. Schnackenberg, J. Neuhaus-Stern, S. Rößler, W. Braunwarth. Development and implementation of statistical methods for quality optimization in the large-format lithium-ion cells production. Energy Technology 8 (2) (2020) p. 1900244. https://doi.org/10.1002/ente.201900244

Niri, M. F., Liu, K., Apachitei, G., Ramirez, L. R., Lain, M., Widanage, D., & Marco, J. (2021). Machine learning for optimised and clean Li-ion battery manufacturing: Revealing the dependency between electrode and cell characteristics. Journal of Cleaner Production, 324, 129272. https://doi.org/10.1016/j.jclepro.2021.129272.

Consumers are driving the transition to electric cars in India, McKinsey Center for Future Mobility, Retrieved from https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/consumers-are-driving-the-transition-to-electric-cars-in-india.

Gordon Bauer, Chih-Wei Hsu, and Nic Lutsey. When might lower income drivers benefit from electric vehicle?. Inetrnational Council on Clean Transportation (2021) Retrieved from https://theicct.org/sites/default/files/publications/EV-equity-feb2021.pdf.

India's journey towards becoming a major domestic EV hub. Invest India. Retrieved from https://www.investindia.gov.in/team-india-blogs/indias-journey-towards-becoming-major-domestic-ev-hub.

What are typical EV maintenance costs? EVConnect. Retrived from https://www.evconnect.com/blog/what-are-typical-ev-maintenance-costs.

Top 10 EV Service, Repair & Maintenance company in India. Retrieved from https://diyguru.org/resources/article/top-10-ev-service-repair-company/.

E. F. Carvalho, J. A. Sousa, J. H. Lagarto. Assessing Electric Vehicle CO2 emissions in the Portuguese power system using a marginal generation approach. International Journal of Sustainable Energy Planning and Management 26 (2022) p. 47–66. https://doi.org/10.5278/ijsepm.3485.

E. Pautasso, M. Osella, B. Caroleo. Addressing the sustainability issue in smart cities: A comprehensive model for evaluating the impacts of Electric Vehicle diffusion. Systems 7 (2) (2019) p. 29. https://doi.org/10.3390/systems7020029.

N. Juul, G. Pantuso, J. E. B. Iversen, T. K. Boomsma. Strategies for charging Electric Vehicles in the electricity market. International Journal of Sustainable Energy Planning and Management 7(2015) p. 67–74. https://doi.org/10.5278/ijsepm.2015.7.6.

Ministry of Power, Government of India. (2023). National Electricity Plan. Retrieved from https://powermin.gov.in/en/content/national-electricity-plan-0

Ministry of Power, Government of India. (2023). Power Sector at a Glance All India. Retrieved from https://powermin.gov.in/en/content/power-sector-glance-all-india.

Ministry of New and Renewable Energy https://pib.gov.in/PressReleasePage.aspx?PRID=1944696.

Kar S.K., Harichandan S. and Prakash O. Factors influencing the adoption of renewable energy in India: supplementing technology-driven drivers and barriers with sustainable development goals. Journal of Advances in Management Research (2024). https://doi.org/10.1108/JAMR-08-2023-0242.

Z. Yang, H. Huang, F. Lin, Sustainable Electric Vehicle batteries for a sustainable world: Perspectives on battery cathodes, environment, supply chain, manufacturing, life cycle, and policy. Advanced Energy Materials 12(26) (2022) p. 2200383. https://doi.org/org/10.1002/aenm.202200383.

A. A. Ahmed, M. A. Nazzal, B. M. Darras, I. M. Deiab, A comprehensive sustainability assessment of battery Electric Vehicles, Fuel cell Electric Vehicles, and Internal Combustion engine vehicles through a comparative circular economy assessment approach. Sustainability 15(1) (2022) p. 171. https://doi.org/10.3390/su15010171.

L. Reimer, A. Kaluza, F. Cerdas, J. Meschke, T. Vietor, C. Herrmann. Design of eco-efficient body parts for Electric Vehicles considering life cycle environmental information, Sustainability 12(14) (2020) p. 5838. https://doi.org/10.3390/su12145838.

A. Antony, S. Sathyan, V. Ravikumar Pandi. Optimized power balancing for a solar-based Electric Vehicle charging station using state flow method. International Conference on Intelligent Solutions for Smart Grids & Smart Cities, Springer, Kollam, India, (2023) p. 375–387. https://doi.org/10.1007/978-981-99-0915-5_26.

H. Gokul, H. Goyal, A. Purushothaman, A. Fahad, S. Harichand, P. S. Babu, V. Ravikumar Pandi. Energy management and economical analysis of solar energy system for industrial applications, 2017 International Conference on Technological Advancements in Power and Energy (TAP Energy), IEEE, Kollam, India, (2017) p. 1–6. https://doi.org/ 10.1109/TAPENERGY.2017.8397317.

A. Beaudet, F. Larouche, K. Amouzegar, P. Bouchard, K. Zaghib. Key challenges and opportunities for recycling Electric Vehicle battery materials. Sustainability 12(14) (2020) p. 5837. https://doi.org/10.3390/su12145837.

Anumita Roychowdhury, Moushumi Mohanty. EV battery recycling can give wings to India’s decarbonisation dreams but faces stiff challenges (2023). Retrieved from https://www.downtoearth.org.in/news/energy/ev-battery-recycling-can-give-wings-to-india-s-decarbonisation-dreams-but-faces-stiff-challenges-92899.

P. Katsikouli, P. Ferraro, H. Richardson, H. Cheng, S. Anderson, D. Mallya, D. Timoney, M. Masen, R. Shorten. Distributed ledger enabled control of tyre-induced particulate matter in smart cities. Frontiers in Sustainable Cities 2 (2020) p. 575482. https://doi.org/10.3389/frsc.2020.575482.

Tata.ev Retrieved from https://ev.tatamotors.com/tiago/ev/specifications.html

A. Gerossier, R. Girard, G. Kariniotakis. Modeling and forecasting Electric Vehicle consumption profiles. Energies 12(7) (2019) p. 1341. https://doi.org/10.3390/en12071341.

Qi, J., & Li, L. (2022). Economic Operation Strategy of an EV Parking Lot with Vehicle-to-Grid and Renewable Energy Integration. Energies, 16(4), 1793. https://doi.org/10.3390/en16041793.

Electric Vehicle Charging Stations at State Parks and Forests. Retrieved from https://www.dcnr.pa.gov/Conservation/SustainablePractices/EVChargingStations/Pages/default.aspx.

Dandl, F., Niels, T., & Bogenberger, K. (2019). Design and Control of Park & Charge Lanes for Carsharing Services with Highly-Automated Electric Vehicles. IFAC-PapersOnLine, 53(2), 15420-15427. https://doi.org/10.1016/j.ifacol.2020.12.2363

R. A. Al Hasibi. Multi-objective analysis of sustainable generation expansion planning based on renewable energy potential: A case study of Bali province of Indonesia. International Journal of Sustainable Energy Planning and Management 31 (2021) p. 189–210. https://doi.org/10.5278/ijsepm.6474.

B. Shyam, P. Kanakasabapathy. Renewable energy utilization in India — policies, opportunities and challenges. 2017 International Conference on Technological Advancements in Power and Energy Kollam, India, (2017) p. 1-6. https://doi.org/10.1109/TAPENERGY.2017.8397311.

S. Sathyan, V. Ravikumar Pandi, A. Antony, S. R. Salkuti, P. Sreekumar. ANN-based energy management system for PV-powered EV charging station with battery backup and vehicle to grid support. International Journal of Green Energy 38 (2023) p. 1–16. https://doi.org/10.1080/15435075.2023.2246048.

Coria, G. E., Sanchez, A. M., S., A., Rattá, G. A., Rivera, S. R., & Romero, A. A. (2018). A Framework for Determining a Prediction-Of-Use Tariff Aimed at Coordinating Aggregators of Plug-In Electric Vehicles. Energies, 12(23), 4487. https://doi.org/10.3390/en12234487.

Mohanty, S., Panda, S., Parida, S. M., Rout, P. K., Sahu, B. K., Bajaj, M., Zawbaa, H. M., Kumar, N. M., & Kamel, S. (2022). Demand side management of electric vehicles in smart grids: A survey on strategies, challenges, modeling, and optimization. Energy Reports, 8, 12466-12490. https://doi.org/10.1016/j.egyr.2022.09.023.

T. K. Bera, A. K. Bohre, I. Ahmed, A. Bhattacharya and A. Yadav, "Smart Charging for Electric Vehicles (EVs): A Short Review," 2022 IEEE Global Conference on Computing, Power and Communication Technologies (GlobConPT), New Delhi, India, 2022, pp. 1-6, doi: 10.1109/GlobConPT57482.2022.9938183.