Identifying future district heating potentials in Germany: a study using empirical insights and distribution cost analysis

Main Article Content

Pia Manz
https://orcid.org/0000-0003-0250-5953
Tobias Fleiter
https://orcid.org/0000-0003-0526-3558
Anna Billerbeck
https://orcid.org/0000-0002-1208-1587
Markus Fritz
https://orcid.org/0000-0001-5742-1648
Şirin Alibaş
https://orcid.org/0009-0003-6631-8660
Wolfgang Eichhammer
https://orcid.org/0000-0002-2699-2410

Abstract

District heating will play an important role in the transition towards climate-neutral heating. Various studies on modelling the energy system show that district heating and the related expansion of the networks can have different levels of importance. A main reason is that the costs for distribution grid expansion are not well or not at all considered and empirical evidence for a threshold for cost-effective distribution costs is missing in such studies. In this paper, we aim to improve empirical evidence allowing to improve the representation of future district heating expansion in energy systems models. For that, the current status of district heating is analysed in high spatial resolution for Germany. The results show that with the currently accepted average costs, a large range of the possible future market share of district heating for buildings between 17 - 52% is possible by 2050, with the parameters of the connection rate and the renovation rate of the building stock. We conclude that the district heating share could be increased by the factor of 2 to 5 in the future, proving the importance of climate-neutral district heating in the transition.

Article Details

How to Cite
Manz, P., Fleiter, T., Billerbeck, A., Fritz, M., Alibaş , Şirin, & Eichhammer, W. (2024). Identifying future district heating potentials in Germany: a study using empirical insights and distribution cost analysis. International Journal of Sustainable Energy Planning and Management, 40, 131–145. https://doi.org/10.54337/ijsepm.8142
Section
Articles

References

References

Lund H, Duic N, Østergaard PA et al. (2018) Future district heating systems and technologies: On the role of smart energy systems and 4th generation district heating. Energy 165:614–619. https://doi.org/10.1016/j.energy.2018.09.115

Persson U, Werner S (2011) Heat distribution and the future competitiveness of district heating. Applied Energy 88:568–576. https://doi.org/10.1016/j.apenergy.2010.09.020

Manz P, Fleiter T, Alibas S et al. (2022) Finding an optimal district heating market share in 2050 for EU-27: Comparison of modelling approaches. eceee Summer Study Proceedings

Triebs MS, Papadis E, Cramer H et al. (2021) Landscape of district heating systems in Germany – Status quo and categorization. Energy Conversion and Management: X 9:100068. https://doi.org/10.1016/j.ecmx.2020.100068

Weinand JM, McKenna R, Mainzer K (2019) Spatial high-resolution socio-energetic data for municipal energy system analyses. Sci Data 6:243. https://doi.org/10.1038/s41597-019-0233-0

Möller B, Wiechers E, Persson U et al. (2022) Peta: the Pan-European Thermal Atlas: version 5.2: Developed as part of the sEEnergies project. https://euf.maps.arcgis.com/apps/webappviewer/index.html?id=8d51f3708ea54fb9b732ba0c94409133. Accessed 30 Nov 2022

Manz P, Kermeli K, Persson U et al. (2021) Decarbonizing District Heating in EU-27 + UK: How Much Excess Heat Is Available from Industrial Sites? Sustainability 13:1439. https://doi.org/10.3390/su13031439

Pelda J, Holler S, Persson U (2021) District heating atlas - Analysis of the German district heating sector. Energy 233:121018. https://doi.org/10.1016/j.energy.2021.121018

Dekade-F-Waerme (2022) Der Fernwärmeatlas: Dekarbonisierung der Fernwärmeversorgung durch die Sektorenkopplung von Strom und Wärme und die Einbindung erneuerbarer Energien. HAWK University of Applied Sciences and Art Hildesheim/Holzminden/Göttingen, Germany

Persson U, Wiechers E, Möller B et al. (2019) Heat Roadmap Europe: Heat distribution costs. Energy 176:604–622. https://doi.org/10.1016/j.energy.2019.03.189

Persson U, Möller B, Sánchez-García L et al. (2021) District heating investment costs and allocation of local resources for EU28 in 2030 and 2050: sEEnergies Report D4.5 - Quantification of Synergies between Energy Efficiency First Principle and Renewable Energy Systems

Sánchez-García L, Averfalk H, Möllerström E et al. (2023) Understanding effective width for district heating. Energy 277:127427. https://doi.org/10.1016/j.energy.2023.127427

Fallahnejad M, Kranzl L, Hummel M (2022) District heating distribution grid costs: a comparison of two approaches. IJSEPM 34:79–90. https://doi.org/10.54337/ijsepm.7013

Fallahnejad M, Hartner M, Kranzl L et al. (2018) Impact of distribution and transmission investment costs of district heating systems on district heating potential. Energy Procedia 149:141–150. https://doi.org/10.1016/j.egypro.2018.08.178

Fallahnejad M, Kranzl L, Haas R et al. (2024) District heating potential in the EU-27: Evaluating the impacts of heat demand reduction and market share growth. Applied Energy 353:122154. https://doi.org/10.1016/j.apenergy.2023.122154

Persson U, Möller B, Wiechers E (2017) Methodologies and assumptions used in the mapping: Deliverable 2.3: A final report outlining the methodology and assumptions used in the mapping. Heat Roadmap Europe 2050, A low-carbon heating and cooling strategy

Leurent M (2019) Analysis of the district heating potential in French regions using a geographic information system. Applied Energy 252:113460. https://doi.org/10.1016/j.apenergy.2019.113460

Dochev I, Peters I, Seller H et al. (2018) Analysing district heating potential with linear heat density. A case study from Hamburg. Energy Procedia 149:410–419. https://doi.org/10.1016/j.egypro.2018.08.205

Blömer S, Götz C, Pehnt M et al. (2019) EnEff:Wärme - netzgebundene Nutzung industrieller Abwärme (NENIA): Kombinierte räumlich-zeitliche Modellierung von Wärmebedarf und Abwärmeangebot in Deutschland. Schlussbericht im Auftrag des Bundesministeriums für Wirtschaft und Energie

zensus 2011 (2017) Ergebnisse des Zensus 2011 zum Download - erweitert: Gitterzellenbasierte Ergebnisse. Wohnungen im 100 Meter-Gitter

HotMaps (2016 - 2020) Hotmaps Toolbox: The open source mapping and planning tool for heating and cooling. EU Horizon 2020 research and innovation program under grant agreement No. 723677. 2016-2020

Kreditanstalt für Wiederaufbau (2021) Förderreport KfW Bankengruppe 2020: Stichtag 31.Dezember 2020. https://www.kfw.de/Presse-Newsroom/Pressematerial/F%C3%B6rderreport/KfW-F%C3%B6rderreport_2020.pdf. Accessed 15 Jul 2021

Kreditanstalt für Wiederaufbau (2020) Förderreport KfW Bankengruppe 2019: Stichtag 31.Dezember 2019. https://www.kfw.de/Presse-Newsroom/Pressematerial/F%C3%B6rderreport/KfW-F%C3%B6rderreport_2019.pdf. Accessed 15 Jul 2021

Kreditanstalt für Wiederaufbau (2019) Förderreport KfW Bankengruppe 2018: Stichtag 31.Dezember 2018. https://www.kfw.de/Presse-Newsroom/Pressematerial/F%C3%B6rderreport/KfW-F%C3%B6rderreport_2018.pdf. Accessed 15 Jul 2021

Kreditanstalt für Wiederaufbau (2018) Förderreport KfW Bankengruppe 2017: Stichtag 31.Dezember 2017. https://www.kfw.de/Presse-Newsroom/Pressematerial/F%C3%B6rderreport/KfW-F%C3%B6rderreport_2017.pdf. Accessed 15 Jul 2021

Kreditanstalt für Wiederaufbau (2017) Förderreport KfW Bankengruppe 2016: Stichtag 31.Dezember 2016. https://www.kfw.de/Presse-Newsroom/Pressematerial/F%C3%B6rderreport/KfW-F%C3%B6rderreport_2016.pdf. Accessed 15 Jul 2021

Kreditanstalt für Wiederaufbau (2016) Förderreport KfW Bankengruppe 2015: Stichtag 31.Dezember 2015. https://www.kfw.de/Presse-Newsroom/Pressematerial/F%C3%B6rderreport/KfW-F%C3%B6rderreport_2015.pdf. Accessed 15 Jul 2021

Fleiter T, Rehfeldt M, Herbst A et al. (2018) A methodology for bottom-up modelling of energy transitions in the industry sector: The FORECAST model. Energy Strategy Reviews 22:237–254. https://doi.org/10.1016/j.esr.2018.09.005

Elsland R, Boßmann T, Peksen I et al. (2013) Auswirkungen von Nutzerverhalten und Klimawandel auf den Heizwärmebedarf im europäischen Haushaltssektor bis 2050. 8. Internationale Energiewirtschaftstagung (IEWT)

Fleiter T, Elsland R, Herbst A et al. (2017) Baseline scenario of the heating and cooling demand in buildings and industry in the 14 MSs until 2050: Heat Roadmap Europe Deliverable D3.3 and D3.4

Elsland R (2015) Development of an integrated modelling concept to capture technological myopia: - Analysing long-term energy demand in the German residential sector -. Dissertation

Greif L (2021) Modelling of district heating potentials in Germany. Master's Thesis, Karlsruhe Institut für Technologie

QGIS Documentation (2022) PyQGIS Developer Cookbook: v.3.22. https://docs.qgis.org/3.22/en/docs/pyqgis_developer_cookbook/index.html. Accessed 18 Aug 2022

Lund H, Østergaard PA, Nielsen TB et al. (2021) Perspectives on fourth and fifth generation district heating. Energy 227:120520. https://doi.org/10.1016/j.energy.2021.120520

van de Ven D-J, Mittal S, Boitier B et al. (2022) D7.6 - Report on the reference and policy scenario modelling results: Deliverable from the H2020 project Paris Reinforce - Delivering on the Paris Agreement: A demand-driven, integrated assessment modelling approach

Stadtwerke Karlsruhe (2021) Fernwärme Online-Netzplan: Geoportal Karlsruhe: Stadtplan: Fernwärmeleitungsnetz. https://geoportal.karlsruhe.de/stadtplan/index.html?webmap=616597c654ea41d19f4002c5e8af1897. Accessed 17 Aug 2023

Arbeitsgemeinschaft Energiebilanzen Energiebilanz der Bundesrepublik Deutschland 2014. Accessed 08 Oct 2023

Arbeitsgemeinschaft Energiebilanzen Anwendungsbilanzen zur Energiebilanz Deutschland: Endenergieverbrauch nach Energieträgern und Anwendungszwecken. https://ag-energiebilanzen.de/wp-content/uploads/2023/01/AGEB_21p2_V3_20221222.pdf. Accessed 08 Oct 2023

eurostat (2021) Population and housing censuses: Census rounds 2021 and 2011. https://ec.europa.eu/eurostat/web/population-demography/population-housing-censuses. Accessed 14 Aug 2023

Mandel T, Worrell E, Alibaş Ş (2023) Balancing heat saving and supply in local energy planning: Insights from 1970-1989 buildings in three European countries. Smart Energy 12:100121. https://doi.org/10.1016/j.segy.2023.100121

Mandel T, Kranzl L, Popovski E et al. (2023) Investigating pathways to a net-zero emissions building sector in the European Union: what role for the energy efficiency first principle? Energy Efficiency 16. https://doi.org/10.1007/s12053-023-10100-0

Popovski E, Ragwitz M, Brugger H (2023) Decarbonization of district heating and deep retrofits of buildings as competing or synergetic strategies for the implementation of the efficiency first principle. Smart Energy 10:100096. https://doi.org/10.1016/j.segy.2023.100096

Lund H, Duic N, Østergaard PA et al. (2016) Smart energy systems and 4th generation district heating. Energy 110:1–4. https://doi.org/10.1016/j.energy.2016.07.105

Hummel M, Müller A, Forthuber S et al. (2023) How cost-efficient is energy efficiency in buildings? A comparison of building shell efficiency and heating system change in the European building stock. Energy Efficiency 16. https://doi.org/10.1007/s12053-023-10097-6