Covering District Heating Demand with Waste Heat from Data Centres A Feasibility Study in Frankfurt, Germany

Main Article Content

Bjarne Jürgens
Johannes Zipplies
Christian Sauer
Oleg Kusyy
Janybek Orozaliev
Ulrike Jordan
Klaus Vajen

Abstract

Currently, the huge potential of data centre waste heat for the decarbonization of the heating sector is often ignored. Here, a feasibility study is presented for covering the heat demand of two districts of Frankfurt (Germany) mainly by data centre waste heat. Contrary to many existing projects, the waste heat shall supply existing buildings, the total heat demand is very high (144 GWh/a) and it should be covered almost exclusively by waste heat usage. In this study, the potential and demand are estimated, a heating supply concept is presented and evaluated regarding costs, heat pump capacity, and storage size. As a result, the utilisation of data centre waste heat is not only possible, but it’s the most promising way for decarbonizing the heating sector in this area. With high-capacity heat pumps (37 MWth), gas boilers (20 MWth) and a storage for daily peaks, 97.5 % of the heat demand can be covered by waste heat usage. It is economically favourable compared to decentralized heat pumps for all types of buildings and with the proposed concept, CO2-emissions in the network area are reduced by 78 % on average. Laws to oblige the waste heat usage of data centres are recommended.

Article Details

How to Cite
Jürgens, B., Zipplies, J., Sauer, C., Kusyy, O., Orozaliev, J., Jordan, U., & Vajen, K. (2024). Covering District Heating Demand with Waste Heat from Data Centres: A Feasibility Study in Frankfurt, Germany. International Journal of Sustainable Energy Planning and Management, 41, 58–70. https://doi.org/10.54337/ijsepm.8149
Section
Articles

References

United Nations Framework Convention on Climate Change. The Paris Agreement; 2016.

Bundesrat. Entwurf eines Gesetzes zur Änderung des Gebäudeenergiegesetzes, zur Änderung der Heizkostenverordnung und zur Änderung der Kehr-und Überprüfungs-ordnung: GEG; 2023.

Bundesrat. Entwurf eines Gesetzes zur Steigerung der Energieeffizienz und zur Ände-rung des Energiedienstleistungsgesetzes; 2023.

Lund H, Østergaard PA, Connolly D, Mathiesen BV. Smart energy and smart energy systems. Energy 2017;137:556–65. https://doi.org/10.1016/j.energy.2017.05.123.

Chittum A, Østergaard PA. How Danish communal heat planning empowers munici-palities and benefits individual consumers. Energy Policy 2014;74:465–74. https://doi.org/10.1016/j.enpol.2014.08.001.

Lund H, Mathiesen BV, Collony D, Østergaard PA. Renewable Energy Systems - A Smart Energy Systems Approach to the Choice and Modelling of 100 % Renewable Solutions. Chemical Engineering Transactions 2014(39):1–6. https://doi.org/10.3303/CET1439001

Lund H, Østergaard PA, Connolly D, Ridjan I, Mathiesen BV, Hvelplund F et al. Energy Storage and Smart Energy Systems. International Journal of Sustainable Energy Plan-ning and Management 2016;11:3–14. https://doi.org/10.5278/IJSEPM.2016.11.2.

Manz P, Kermeli K, Persson U, Neuwirth M, Fleiter T, Crijns-Graus W. Decarbonizing District Heating in EU-27 + UK: How Much Excess Heat Is Available from Industrial Sites? Sustainability 2021;13(3):1439. https://doi.org/10.3390/su13031439.

Frederiksen S, Werner S. District Heating and Cooling. Lund: Studentlitteratur; 2013.

Nielsen S, Hansen K, Lund R, Moreno D. Unconventional Excess Heat Sources for Dis-trict Heating in a National Energy System Context. Energies 2020;13(19):5068. https://doi.org/10.3390/en13195068.

Rohde D, Andresen T, Nord N. Interaction Between a Building Complex with an Inte-grated Thermal Energy System and a District Heating System. Aalborg University, De-partment of Civil Engineering; 2016.

Sorknæs P, Nielsen S, Lund H, Mathiesen BV, Moreno D, Thellufsen JZ. The benefits of 4th generation district heating and energy efficient datacentres. Energy 2022;260:125215. https://doi.org/10.1016/j.energy.2022.125215.

Oltmanns J, Sauerwein D, Dammel F, Stephan P, Kuhn C. Potential for waste heat utilization of hot‐water‐cooled data centers: A case study. Energy Science & Engi-neering 2020;8(5):1793–810. https://doi.org/10.1002/ese3.633.

Lund H, Østergaard PA, Chang M, Werner S, Svendsen S, Sorknæs P et al. The status of 4th generation district heating: Research and results. Energy 2018;164:147–59. https://doi.org/10.1016/j.energy.2018.08.206.

Lund R, Østergaard DS, Yang X, Mathiesen BV. Comparison of Low-temperature Dis-trict Heating Concepts in a Long-Term Energy System Perspective. 5-18 Pages / Inter-national Journal of Sustainable Energy Planning and Management, Vol 12 (2017) 2017. https://doi.org/10.5278/IJSEPM.2017.12.2.

Münster M, Morthorst PE, Larsen HV, Bregnbæk L, Werling J, Lindboe HH et al. The role of district heating in the future Danish energy system. Energy 2012;48(1):47–55. https://doi.org/10.1016/j.energy.2012.06.011.

David A, Mathiesen BV, Averfalk H, Werner S, Lund H. Heat Roadmap Europe: Large-Scale Electric Heat Pumps in District Heating Systems. Energies 2017;10(4):578. https://doi.org/10.3390/en10040578.

Lund, Rasmus, Persson, Urban. Mapping of potential heat sources for heat pumps for district heating in Denmark. Energy 2016(110). https://doi.org/10.1016/j.energy.2015.12.127.

Pieper H, Lepiksaar K, Volkova A. GIS-based approach to identifying potential heat sources for heat pumps and chillers providing district heating and cooling. IJSEPM 2022;34:29–44. https://doi.org/10.54337/ijsepm.7021.

Moreno D, Nielsen S, Sorknæs P, Lund H, Thellufsen JZ, Mathiesen BV. Exploring the location and use of baseload district heating supply. What can current heat sources tell us about future opportunities? Energy 2024;288:129642. https://doi.org/10.1016/j.energy.2023.129642.

Ahrendts F, Drechsler B, Hendricks J, Küpper J, Lang S, Peil T et al. Roll-out von Groß-wärmepumpen in Deutschland. Fraunhofer-Gesellschaft; 2023.

Monsalves JJ, Bergaenztlé C, Keles D. Economic feasibility of data center waste-heat integration into district heating: what does it require? Proceeedings of the 2023 19th International Conference on the European Energy Market (EEM) 2023:1–6. https://doi.org/10.1109/EEM58374.2023.10161985.

Ülkü U, Karadeniz ZH, Akkurt GG. Waste Heat Recovery from Cooling Systems of Data Centers. In: Sogut MZ, Karakoc TH, Secgin O, Dalkiran A, editors. Proceedings of the 2022 International Symposium on Energy Management and Sustainability: ISEMAS 2022, 1st ed. Cham: Springer International Publishing; Springer; 2023, p. 381–390.

Huang P, Copertaro B, Zhang X, Shen J, Löfgren I, Rönnelid M et al. A review of data centers as prosumers in district energy systems: Renewable energy integration and waste heat reuse for district heating. Applied Energy 2020;258:114109. https://doi.org/10.1016/j.apenergy.2019.114109.

Wahlroos M, Pärssinen M, Rinne S, Syri S, Manner J. Future views on waste heat uti-lization – Case of data centers in Northern Europe. Renewable and Sustainable Ener-gy Reviews 2018;82:1749–64. https://doi.org/10.1016/j.rser.2017.10.058.

Nguyen C. Utilizing Facebook Data Center Surplus heat for District heating in Odense – Denmark; Available from: https://www.ca-eed.eu/wp-content/uploads/2021/10/2_IS6.6_Facebook_DK_Chan-Nguyen.pdf.

Copenhagen Centre on Energy Efficiency. District Heating in Denmark, the case of Fjernvarme Fyn. [February 21, 2024]; Available from: https://c2e2.unepccc.org/kms_object/district-heating-in-denmark-the-case-of-fjernvarme-fyn/.

Fortum Corporation. Fortum and Ericsson sign collab­o­ration agreement on utilising data centre’s waste heat for district heating: Press release. [February 21, 2024]; Available from: https://www.fortum.com/media/2016/11/fortum-and-ericsson-sign-collaboration-agreement-utilising-data-centres-waste-heat-district-heating.

Stockholm Exergi. Heat recovery with Open District Heating; Available from: https://www.stockholmexergi.se/varmeatervinning/.

Sitra. District heating from data centre waste heat - Mäntsälä; Available from: https://www.sitra.fi/en/cases/district-heating-from-data-centre-waste-heat-mantsala/.

Boye Petersen A. ReUseHeat Experiences from other urban waste heat recovery in-vestments: Handbook. 25 cases of urban waste heat recovery. Kolding, Denmark; 2018.

Huang F, Lu J, Zheng J, Baleynaud JM. Feasibility of heat recovery for district heating based on Cloud Computing Industrial Park 2015(International Conference on Re-newable Energy Research and Applications (ICRERA)):287–91. https://doi.org/10.1109/ICRERA.2015.7418711.

BDEW/VKU/GEODE. Leitfaden Abwicklung von Standardlastprofilen Gas. Berlin; 2020.

Meteonorm. Bern: Meteotest AG; 2018.

Baez MJ, Larriba Martinez T. Technical Report on the Elaboration of a Cost Estima-tion Methodology: Work Package 3 - Estimating RHC energy costs. Madrid, Spain; 2015.

Deutsche Energie-Agentur GmbH. dena-Leitstudie Aufbruch Klimaneutralität: Eine gesamtgesellschaftliche Aufgabe 2021.

Bürger V, Hesse T, Palzer A, Köhler B, Herkel S, Engelmann P et al. Klimaneutraler Gebäudebestand 2050 - Energieeffizienzpotenziale und die Auswirkungen des Kli-mawandels auf den Gebäudebestand. Dessau-Roßlau; 2017.

Matzarakis A, Thomsen F, Mayer H. Klimawandel und Heizgradtage in Freiburg im Breisgau, Südwestdeutschland. Gefahrstoffe- Reinhaltung der Luft 2009(7/8):319–24.

Cischinsky H, Diefenbach N. Datenerhebung Wohngebäudebestand 2016: Datener-hebung zu den energetischen Merkmalen und Modernisierungsraten im deutschen und hessischen Wohngebäudebestand. Darmstadt; 2018.

Herrmann A, Mädlow A, Gross U, Krause H. Auswirkungen des Klimawandels auf den Energiebedarf von Gebäuden und den Ertrag erneuerbarer Energien. In: 14. Sympo-sium Energieinnovation; 2016.

Schlesinger M, Hofer P, Kemmler A, Kirchner A, Strassburg S, Lindenberger D et al. Energieszenarien für ein Energiekonzept der Bundesregierung. Basel, Köln, Osna-brück; 2010.

Große R, Christopher B, Stefan W, Geyer R, Robbi S. Long term (2050) projections of techno-economic performance of large-scale heating and cooling in the EU: External study performed by ILF Consulting Engineers Austria GmbH, and AIT Austrian Insti-tute of Technology GmbH for the Joint Research Centre; 2017.

BAFA. Informationsblatt CO2-Faktoren: Bundesförderung für Energie- und Ressour-ceneffizienz in der Wirtschaft - Zuschuss.

BMWK. Richtlinie für die Bundesförderung für effiziente Wärmenetze „BEW“; 2022.

BMWi. Richtlinie für die Bundesförderung für effiziente Gebäude – Einzelmaßnah-men (BEG EM); 2021.

Destatis. Erdgas- und Stromdurchschnittspreise. [March 22, 2023]; Available from: https://www.destatis.de/DE/Themen/Wirtschaft/Preise/Erdgas-Strom-DurchschnittsPreise/_inhalt.html#421260.

Bundesministerium der Justiz. Gesetz über einen nationalen Zertifikatehandel für Brennstoffemissionen (Brennstoffemissionshandelsgesetz - BEHG): BEHG; 2022.

Öko-Institut, Berlin, Fraunhofer ISI, IREES, Thünen-Institut, Braunschweig. Projekti-onsbericht 2021 für Deutschland; 2022.

Günther et al. Wärmepumpen in Bestandsgebäuden: Ergebnisse aus dem For-schungsprojekt "WPsmart im Bestand" (Abschlussbericht) 2020.

Destatis. Baupreisindizes: Deutschland, Jahre, Messzahlen mit/ohne Umsatzsteuer, Gebäudearten, Bauarbeiten (Hochbau). [March 22, 2023]; Available from: https://www-genesis.destatis.de/genesis//online?operation=table&code=61261-0001&bypass=true&levelindex=0&levelid=1679478704219#abreadcrumb.