A methodology for the determination of future Carbon Management Strategies: A case study of Austria

Main Article Content

Susanne Hochmeister
https://orcid.org/0009-0008-2701-6770
Lisa Kühberger
https://orcid.org/0000-0003-4642-7854
Jakob Kulich
https://orcid.org/0000-0003-3538-0181
Holger Ott
https://orcid.org/0000-0002-7297-9380
Thomas Kienberger
https://orcid.org/0000-0003-1297-0808

Abstract

The achievement of global climate targets outlined in the Paris Agreement represents a critical challenge in the coming decades. Certain industry sectors cannot completely avoid all emissions from their processes. In this context, the term unavoidable or Hard-to-abate emissions is used. Carbon Capture and Utilization (CCU) and Carbon Capture and Storage (CCS) are recognized as essential components for addressing those emissions to achieve Net Zero Emissions. To identify effective Carbon Management Strategies, balancing future CO2 sources and possible sinks for achieving long-term climate targets is essential. Especially in Austria hardly any comprehensive studies have been carried out.


This work presents a comprehensive analysis of Austria’s CO2 point sources as well as their projected development until 2050 based on technology-based scenarios. Geological CO2 storage in Austria is primarily feasible in former hydrocarbon reservoirs and saline aquifers. Future demands for CO2 as CCU feedstock will arise in the chemical industry.


By 2050, industry will emit approximately 4 Mt of unavoidable CO2 annually. These emissions must be stored in the long term and correspond to the minimum demand for CCS. Fugitive emissions from agriculture, for example, cannot be captured. Thus, they are not subject of CCU/S measures. Negative emissions are therefore necessary to achieve the climate targets. These negative emissions and the possible use of CO2 as feedstock are covered by biogenic CO2.

Article Details

How to Cite
Hochmeister, S., Kühberger, L., Kulich, J., Ott, H., & Kienberger, T. (2024). A methodology for the determination of future Carbon Management Strategies: A case study of Austria. International Journal of Sustainable Energy Planning and Management, 41, 108–124. https://doi.org/10.54337/ijsepm.8280
Section
Articles

References

United Nations Framework Convention on Climate Change. Paris Agreement; 2016.

European Union. Regulation (EU) 2021/1119 of the European Parliament and of the Council of 30 June 2021 establishing the framework for achieving climate neutrality and amending Regulations (EC) No 401/2009 and (EU) 2018/1999 (‘European Climate Law’): European Climate Law; 2021.

Bundeskanzleramt, Bundesministerium für europäische und internationale Angelegenheiten. Österreich und die Agenda 2030: Freiwilliger Nationaler Bericht zur Umsetzung der Nachhaltigen Entwicklungsziele / SDGs (FNU).

Anderl M, Friedrich A, Gangl M, Haider S, Köther T, Kriech M et al. Austria'a National Inventory Report 2021: Submission under the United Nations Framework Convention on Climate Change and under the Kyoto Protocol. Wien.

Thambimuthu K, Davison J, Gupta M. CO2 Capture and Reuse - Workshop on Carbon Dioxide Capture and Storage - IPCC; 2002.

Debarre R, Gahlot P, Grillet Celeste, Plaisant M. Carbon Capture Utilization and Storage: Towards Net-Zero; 2021.

Federal Ministry Republic of Austria. Long-Term Strategy 2050 - Austria Period through to 2050: pursuant to Regulation (EU) 2018/1999 of the European Parliament and of the Council on the Governance of the Energy Union and Climate Action as per Decision 1/CP.21, paragraph 35 in accordance with Article 4, paragraph 19 of the Paris Agreement. Vienna; 2019.

Patricio J, Angelis-Dimakis A, Castillo-Castillo A, Kalmykova Y, Rosado L. Method to identify opportunities for CCU at regional level — Matching sources and receivers. Journal of CO2 Utilization 2017;22:330–45. https://doi.org/10.1016/j.jcou.2017.10.009.

Bains P, Psarras P, Wilcox J. CO2 capture from the industry sector. Progress in Energy and Combustion Science 2017;63:146–72. https://doi.org/10.1016/j.pecs.2017.07.001.

Intergovernmental Panel on Climate Change. IPCC special report on carbon dioxide capture and storage. 1st ed. Cambridge: Cambridge Univ. Press; 2005.

Ramirez A, El Khamlichi A, Markowz G, Rettenmaier N, Baitz M, Jungmeier G et al. LCA4CCU: Guidelines for life cycle assessment of carbon capture and utilisation. Luxembourg: Publications Office of the European Union; 2022.

Billig E, Decker M, Benzinger W, Ketelsen F, Pfeifer P, Peters R et al. Non-fossil CO2 recycling—The technical potential for the present and future utilization for fuels in Germany. Journal of CO2 Utilization 2019;30:130–41. https://doi.org/10.1016/j.jcou.2019.01.012.

Hansson J, Hackl R, Taljegard M, Brynolf S, Grahn M. The Potential for Electrofuels Production in Sweden Utilizing Fossil and Biogenic CO2 Point Sources. Front. Energy Res. 2017;5. https://doi.org/10.3389/fenrg.2017.00004.

Naims H. Economics of carbon dioxide capture and utilization—a supply and demand perspective. Environmental Science and Pollution Research 2016;23(22):22226–41. https://doi.org/10.1007/s11356-016-6810-2.

Reiter G, Lindorfer J. Evaluating CO2 sources for power-to-gas applications – A case study for Austria. Journal of CO2 Utilization 2015;10:40–9. https://doi.org/10.1016/j.jcou.2015.03.003.

Scharf C, Clemens T (eds.). CO2-Sequestration Potential in Austrian Oil and Gas Fields; 2006.

Bui M, Adjiman CS, Bardow A, Anthony EJ, Boston A, Brown S et al. Carbon capture and storage (CCS): the way forward. Energy Environ. Sci. 2018;11(5):1062–176. https://doi.org/10.1039/C7EE02342A.

Welkenhuysen K, Brüstle A-K, Bottig M, Ramirez A, Swennen R, Piessens K. A techno-economic approach for capacity assessment and ranking of potential options for geological storage of CO2 in Austria. Geol. Belg. 2016;19(3-4):237–49. https://doi.org/10.20341/gb.2016.012.

Geres R, Kohn A, Lenz SC, Ausfelder F, Bazzanella A, Möller A. Roadmap Chemie 2050: Auf dem Weg zu einer treibhausgasneutralen chemischen Industrie in Deutschland eine Studie von DECHEMA und FutureCamp für den VCI. Frankfurt am Main: DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V; 2019.

Mikkelsen M, Jørgensen M, Krebs FC. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci. 2010;3(1):43–81. https://doi.org/10.1039/B912904A.

Kleijne Kd, Hanssen SV, van Dinteren L, Huijbregts MAJ, van Zelm R, Coninck Hd et al. Limits to Paris compatibility of CO2 capture and utilization. One Earth 2022;5(2):168–85. https://doi.org/10.1016/j.oneear.2022.01.006.

Michele Aresta, Angela Dibenedetto, Antonella Angelini. The changing paradigm in CO2 utilization. Journal of CO2 Utilization 2013;3-4:65–73. https://doi.org/10.1016/j.jcou.2013.08.001.

Natural Resources Canada. Capturing the opportunity: A Carbon Management Strategy for Canada; 2023.

Schenuit F, Böttcher M, Geden O. "Carbon Management": opportunities and risks for ambitious climate policy. Stiftung Wissenschaft und Politik (SWP), German Institute for International and Security Affairs; 2023.

Fifita S, Forster P, Ginzburg V, Handa C, Kheshgi H, Kobayashi S et al. Global Warming of 1.5 °C: Summary for Policymakers Technical Summary Frequently Asked Questions Glossary. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty; 2019.

Bui M, Mac Dowell N. Greenhouse gas removal technologies. London: Royal Society of Chemistry; 2022.

Debarre R, Gahlot P, Durand M, Machado FG. Negative Emissions Technologies.

Bundesministerium für Finanzen. Carbon Management; 2023.

Fischer S. Die Carbon Management Strategie: Ein Baustein zum Erreichen der Treibhausgasneutralität. CMS Stakeholderdialog AUT. Deutschland; 2023.

Becattini V, Gabrielli P, Antonini C, Campos J, Acquilino A, Sansavini G et al. Carbon dioxide capture, transport and storage supply chains: Optimal economic and environmental performance of infrastructure rollout. International Journal of Greenhouse Gas Control 2022;117:103635. https://doi.org/10.1016/j.ijggc.2022.103635.

IEA. CCUS Projects Database. Paris; 2023.

Neele F, Koenen M, van Deurzen J, Seebregts A, Groenenberg H, Thielemann T. Large-scale CCS transport and storage networks in North-west and Central Europe. Energy Procedia 2011;4:2740–7. https://doi.org/10.1016/j.egypro.2011.02.176.

Wu Q, Lin Q, Yang Q, Li Y. An optimization‐based CCUS source‐sink matching model for dynamic planning of CCUS clusters. Greenhouse Gases 2022;12(4):433–53. https://doi.org/10.1002/ghg.2159.

Morbee J, Serpa J, Tzimas E. Optimised deployment of a European CO2 transport network. International Journal of Greenhouse Gas Control 2012;7:48–61. https://doi.org/10.1016/j.ijggc.2011.11.011.

Ffe Forschungsgesellschaft für Energiewirtschaft mbH. Analyse CO2-Infrastrukturbedarf in Bayern; 2023.

Anderl M, Friedrich A, Gangl M, Haider S, Köther T, Kriech M et al. Austria'a National Inventory Report 2023: Submission under the United Nations Framework Convention on Climate Change and under the Kyoto Protocol. Wien.

Abhinandan Kumar, Pardeep Singh, Pankaj Raizada, Chaudhery Mustansar Hussain. Impact of COVID-19 on greenhouse gases emissions: A critical review. Science of The Total Environment 2022;806:150349. https://doi.org/10.1016/j.scitotenv.2021.150349.

EU Emission Trading System (EU ETS); 2019.

Bundesrepublik Österreich. Bundesgesetz über ein System für den Handel mit Treibhausgasemissionszertifikaten (Emissionszertifikategesetz 2011 – EZG 2011): Emissionszertifikategesetz 2011.

Umweltbundesamt. Pollutant Release and Transfer Register - PRTR; 2019.

Alton V, Binderbauer P, Cvetkovska R, Drexler-Schmid G, Gahleitner B, Geyer R et al. Pathway to industrial decarbonisation: Scenarios for the development of the industrial sector in Austria.

Bazzanella A, Ausfelder F. Low carbon energy and feedstock for the European chemical industry. Frankfurt am Main: DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

Biermann M, Normann F, Johnsson F, Hoballah R, Onarheim K. Capture of CO2 from Steam Reformer Flue Gases Using Monoethanolamine: Pilot Plant Validation and Process Design for Partial Capture. Ind. Eng. Chem. Res. 2022;61(38):14305–23. https://doi.org/10.1021/acs.iecr.2c02205.

Deublein D, Steinhauser A. Biogas from waste and renewable resources: An introduction. Weinheim: Wiley-VCH; 2011.

Ali U, Font-Palma C, Akram M, Agbonghae EO, Ingham DB, Pourkashanian M. Comparative potential of natural gas, coal and biomass fired power plant with post - combustion CO2 capture and compression. International Journal of Greenhouse Gas Control 2017;63:184–93. https://doi.org/10.1016/j.ijggc.2017.05.022.

Wang X, Song C. Carbon Capture From Flue Gas and the Atmosphere: A Perspective. Front. Energy Res. 2020;8. https://doi.org/10.3389/fenrg.2020.560849.

Wiley DE, Ho MT, Bustamante A. Assessment of opportunities for CO2 capture at iron and steel mills: An Australian perspective. Energy Procedia 2011;4:2654–61. https://doi.org/10.1016/j.egypro.2011.02.165.

Yagihara K, Ohno H, Guzman-Urbina A, Ni J, Fukushima Y. Analyzing flue gas properties emitted from power and industrial sectors toward heat-integrated carbon capture. Energy 2022;250:123775. https://doi.org/10.1016/j.energy.2022.123775.

Béchara R, Hamadeh H, Mirgaux O, Patisson F. Optimization of the Iron Ore Direct Reduction Process through Multiscale Process Modeling. Materials (Basel) 2018;11(7). https://doi.org/10.3390/ma11071094.

Arachchige USPR, Kawan D, Melaaen MC. Simulation of Carbon Dioxide Capture for Aluminium Production Process. IJMO 2014;4(1):43–50. https://doi.org/10.7763/IJMO.2014.V4.345.

Simoni M, Wilkes MD, Brown S, Provis JL, Kinoshita H, Hanein T. Decarbonising the lime industry: State-of-the-art. Renewable and Sustainable Energy Reviews 2022;168:112765. https://doi.org/10.1016/j.rser.2022.112765.

Caudle B, Taniguchi S, Nguyen TTH, Kataoka S. Integrating carbon capture and utilization into the glass industry: Economic analysis of emissions reduction through CO2 mineralization. Journal of Cleaner Production 2023;416:137846. https://doi.org/10.1016/j.jclepro.2023.137846.

Assen N von der, Müller LJ, Steingrube A, Voll P, Bardow A. Selecting CO2 Sources for CO2 Utilization by Environmental-Merit-Order Curves. Environ Sci Technol 2016;50(3):1093–101. https://doi.org/10.1021/acs.est.5b03474.

Fischedick M, Görner K, Thomeczek M. CO2: Abtrennung, Speicherung, Nutzung: Ganzheitliche Bewertung im Bereich von Energiewirtschaft und Industrie. Berlin, Heidelberg: Springer Vieweg; 2015.

Nagovnak P, Schützenhofer C, Mobarakeh MR, Cvetkovska R, Stortecky S, Hainoun A et al. Assessment of technology-based options for climate neutrality in Austrian manufacturing industry. Heliyon 2024;10(3):e25382. https://doi.org/10.1016/j.heliyon.2024.e25382.

Anderl M, Böhmer S, Freisinger E, Gössl M, Gugele B, Heller C et al. Energie- und Treibhausgasszenarien 2023: WEM, WAM und Transition mit Zeitreihen von 2020 bis 2050. Umweltbundesamt GmbH.

Kulich J, Ott H. CCS: An essential component for a climate-neutral Austria? What we know so far; Manuscript in prepar