Heating Sector Strategies in Climate-Neutral Societies

Main Article Content

Steffen Nielsen
https://orcid.org/0000-0002-3362-1896
Peter Sorknæs
https://orcid.org/0000-0001-5095-9146
Brian Vad Mathiesen
https://orcid.org/0000-0003-3917-1184
Henrik Lund
https://orcid.org/0000-0002-4930-7885
Diana Moreno
https://orcid.org/0000-0001-5972-8977
Jakob Zinck Thellufsen
https://orcid.org/0000-0001-6119-4572

Abstract

This paper investigates how the heating sector can best support the green transition into climate-neutral societies. In order to do so, the heating sector must be considered and analysed as an integral part of the entire energy system as well as be coordinated with other greenhouse gas emitting sectors. Consequently, in this study with Denmark as a case, we establish the context of a full transition of all sectors into a climate-neutral society. Using such context, we investigate the role of the heating sector with a focus on excess heat potentials, energy savings vs. supply, district heating vs. individual heating as well as the ability to recycle low-temperature excess heat and to provide flexibility and support the integration of variable renewable energy sources also in other subsectors of the energy system. The results of the analyses show (1) a feasible reduction level of around 36% in end-use heat demand in buildings, with higher potential in older buildings and lower in new buildings, (2) expanding district heating to areas with a density of 15-10 kWh/m2 is feasible, resulting in a district heating share of 63-70% of the heat demand compared to the current level of 51%, (3) a large unexploited potential to use heat sources such as industrial excess heat, geothermal heat, data centres and power-to-X, reducing the need for biomass in the heating sector, and (4) increased use of variable renewable energy and combined heat and power production increasing gas export and thus replacing biomass consumption outside the country.

Article Details

How to Cite
Nielsen, S., Sorknæs, P., Vad Mathiesen, B., Lund, H., Moreno, D., & Zinck Thellufsen, J. (2025). Heating Sector Strategies in Climate-Neutral Societies. International Journal of Sustainable Energy Planning and Management, 43, 101–122. https://doi.org/10.54337/ijsepm.8554
Section
Articles

References

IPCC. Climate Change 2022 - Mitigation of Climate Change - Working Group III. Cambridge University Press 2022.

Ritchie H, Roser M, Rosado P. CO₂ and Greenhouse Gas Emissions. Our World in Data 2020.

Paardekooper S, Lund H, Thellufsen JZ, Bertelsen N, Mathiesen BV. Heat Roadmap Europe: strategic heating transition typology as a basis for policy recommendations. Energy Effic 2022;15. https://doi.org/10.1007/s12053-022-10030-3.

Heat Roadmap Europe 4 consortium. Heat Roadmap Europe 4 Project 2019. https://heatroadmap.eu/.

Connolly D, Mathiesen BV, Østergaard PA, Möller B, Nielsen S, Lund H, et al. Heat Roadmap Europe 1: First Pre-Study for the EU27 2012:99. https://vbn.aau.dk/ws/portalfiles/portal/77244240/Heat_Roadmap_Europe_Pre_Study_1.pdf.

Connolly D, Mathiesen BV, Østergaard PA, Möller B, Nielsen S, Lund H, et al. Heat Roadmap Europe: Second pre-study 2013; http://vbn.aau.dk/files/77342092/Heat_Roadmap_Europe_Pre_Study_II_May_2013.pdf (accessed January 23, 2018).

Connolly D, Hansen K, Drysdale D, Lund H, Mathiesen BV, Werner S, et al. STRATEGO - Enhanced Heating and Cooling Plans to Quantify the Impact of Increased Energy Efficiency in EU Member States. Aalborg University: Aalborg, Denmark, 2016. https://www.euroheat.org/wp-content/uploads/2016/04/WP2-Main-Report.pdf

Connolly D, Lund H, Mathiesen BV, Østergaard PA, Möller B, Nielsen S, et al. Smart Energy Systems: Holistic and Integrated Energy Systems for the era of 100% Renewable Energy 2013:4. http://vbn.aau.dk/files/78422810/Smart_Energy_Systems_Aalborg_University.pdf (accessed September 24, 2020).

Lund H, Østergaard PA, Connolly D, Ridjan I, Mathiesen BV, Hvelplund F, et al. Energy storage and smart energy systems. International Journal of Sustainable Energy Planning and Management 2016;11. https://doi.org/10.5278/ijsepm.2016.11.2.

Fallahnejad M, Kranzl L, Haas R, Hummel M, Müller A, García LS, et al. District heating potential in the EU-27: Evaluating the impacts of heat demand reduction and market share growth. Appl Energy 2024;353:122154. https://doi.org/10.1016/J.APENERGY.2023.122154.

Persson U, Werner S. Heat distribution and the future competitiveness of district heating. Appl Energy 2011;88:568–76. https://doi.org/10.1016/j.apenergy.2010.09.020.

Nielsen S, Möller B. GIS based analysis of future district heating potential in Denmark. Energy 2013;57:458–68. https://doi.org/10.1016/j.energy.2013.05.041.

Manz P, Fleiter T, Billerbeck A, Fritz M, Alibaş Ş, Eichhammer W. Identifying future district heating potentials in Germany: a study using empirical insights and distribution cost analysis. International Journal of Sustainable Energy Planning and Management 2024;40:131–45. https://doi.org/10.54337/ijsepm.8142.

Guelpa E, Verda V. Thermal energy storage in district heating and cooling systems: A review. Appl Energy 2019;252:113474. https://doi.org/10.1016/J.APENERGY.2019.113474.

Lund H, Werner S, Wiltshire R, Svendsen S, Thorsen JE, Hvelplund F, et al. 4th Generation District Heating (4GDH). Energy 2014;68:1–11. https://doi.org/10.1016/j.energy.2014.02.089.

Sorknæs P, Østergaard PA, Thellufsen JZ, Lund H, Nielsen S, Djørup S, et al. The benefits of 4th generation district heating in a 100% renewable energy system. Energy 2020;213. https://doi.org/10.1016/j.energy.2020.119030.

Sorknæs P, Nielsen S, Lund H, Mathiesen BV, Moreno D, Thellufsen JZ. The benefits of 4th generation district heating and energy efficient datacentres. Energy 2022;260:125215. https://doi.org/10.1016/j.energy.2022.125215.

Hvelplund F, Krog L, Nielsen S, Terkelsen E, Madsen KB. Policy paradigms for optimal residential heat savings in a transition to 100% renewable energy systems. Energy Policy 2019;134. https://doi.org/10.1016/j.enpol.2019.110944.

Connolly D, Lund H, Mathiesen B V., Werner S, Möller B, Persson U, et al. Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system. Energy Policy 2014;65:475–89. https://doi.org/10.1016/j.enpol.2013.10.035.

Volkova A, Latõšov E, Lepiksaar K, Siirde A. Planning of district heating regions in Estonia. International Journal of Sustainable Energy Planning and Management 2020;27:5–15. https://doi.org/10.5278/ijsepm.3490.

Meyer NI, Mathiesen BV, Hvelplund F. Barriers and potential solutions for energy renovation of buildings in Denmark. International Journal of Sustainable Energy Planning and Management 2014. https://doi.org/10.5278/ijsepm.2014.1.5.

Gudmundsson O, Schmidt RR, Dyrelund A, Thorsen JE. Economic comparison of 4GDH and 5GDH systems – Using a case study. Energy 2022;238. https://doi.org/10.1016/j.energy.2021.121613.

Lund H, Østergaard PA, Nielsen TB, Werner S, Thorsen JE, Gudmundsson O, et al. Perspectives on fourth and fifth generation district heating. Energy 2021;227:120520. https://doi.org/10.1016/J.ENERGY.2021.120520.

Werner S. International review of district heating and cooling. Energy 2017;137. https://doi.org/10.1016/j.energy.2017.04.045.

Jodeiri AM, Goldsworthy MJ, Buffa S, Cozzini M. Role of sustainable heat sources in transition towards fourth generation district heating – A review. Renewable and Sustainable Energy Reviews 2022;158. https://doi.org/10.1016/j.rser.2022.112156.

Ericsson K, Werner S. The introduction and expansion of biomass use in Swedish district heating systems. Biomass Bioenergy 2016;94:57–65. https://doi.org/10.1016/J.BIOMBIOE.2016.08.011.

Tian Z, Zhang S, Deng J, Fan J, Huang J, Kong W, et al. Large-scale solar district heating plants in Danish smart thermal grid: Developments and recent trends. Energy Convers Manag 2019;189. https://doi.org/10.1016/j.enconman.2019.03.071.

Dahash A, Ochs F, Janetti MB, Streicher W. Advances in seasonal thermal energy storage for solar district heating applications: A critical review on large-scale hot-water tank and pit thermal energy storage systems. Appl Energy 2019;239:296–315. https://doi.org/10.1016/J.APENERGY.2019.01.189.

Nielsen S, Hansen K, Lund R, Moreno D. Unconventional Excess Heat Sources for District Heating in a National Energy System Context. Energies 2020;13. https://doi.org/10.3390/en13195068.

Jürgens B, Zipplies J, Sauer C, Kusyy O, Orozaliev J, Jordan U, et al. Covering District Heating Demand with Waste Heat from Data Centres: A Feasibility Study in Frankfurt, Germany. International Journal of Sustainable Energy Planning and Management 2024;41:58–70. https://doi.org/10.54337/ijsepm.8149.

Petrović S, Bühler F, Radoman U, McKenna R. Power transformers as excess heat sources – a case study for Denmark. Energy 2021:122416. https://doi.org/10.1016/j.energy.2021.122416.

Lund H, Skov IR, Thellufsen JZ, Sorknæs P, Korberg AD, Chang M, et al. The role of sustainable bioenergy in a fully decarbonised society. Renew Energy 2022;196:195–203. https://doi.org/10.1016/J.RENENE.2022.06.026.

David A, Mathiesen BV, Averfalk H, Werner S, Lund H. Heat Roadmap Europe: Large-scale electric heat pumps in district heating systems. Energies (Basel) 2017;10. https://doi.org/10.3390/en10040578.

Mathiesen BV, Blarke MB, Hansen K, Connolly D. The role of large-scale heat pumps for short term integration of renewable energy. Copenhagen: 2011.

Pieper H, Ommen T, Elmegaard B, Brix Markussen W. Assessment of a combination of three heat sources for heat pumps to supply district heating. Energy 2019;176:156–70. https://doi.org/10.1016/J.ENERGY.2019.03.165.

Lund H, Thellufsen JZ, Sorknæs P, Mathiesen BV, Chang M, Madsen PT, et al. Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society. Renewable and Sustainable Energy Reviews 2022;168:112777. https://doi.org/10.1016/J.RSER.2022.112777.

Kany MS, Mathiesen BV, Skov IR, Korberg AD, Thellufsen JZ, Lund H, et al. Energy efficient decarbonisation strategy for the Danish transport sector by 2045. Smart Energy 2022;5:100063. https://doi.org/10.1016/J.SEGY.2022.100063.

Möller B, Nielsen S. High resolution heat atlases for demand and supply mapping. International Journal of Sustainable Energy Planning and Management 2014;1:41–58. https://doi.org/10.5278/ijsepm.2014.1.4.

Grundahl L, Nielsen S. Heat atlas accuracy compared to metered data. International Journal of Sustainable Energy Planning and Management 2019. https://doi.org/10.5278/ijsepm.3174.

Nielsen S, Thellufsen JZ, Sorknæs P, Djørup SR, Sperling K, Østergaard PA, et al. Smart energy aalborg: Matching end-use heat saving measures and heat supply costs to achieve least-cost heat supply. International Journal of Sustainable Energy Planning and Management 2020. https://doi.org/10.5278/ijsepm.3398.

Wittchen KB, Kragh J, Aggerholm S. Varmebesparelse i eksisterende bygninger - potentiale og økonomi. 2017.

The Swedish District Heating Association. Kulvertkostnadskatalog (The district heating pipe cost catalogue) 2013.

Nielsen S, Grundahl L. District heating expansion potential with low-temperature and end-use heat savings. Energies (Basel) 2018. https://doi.org/10.3390/en11020277.

Lund H, Mathiesen BV, Thellufsen JZ, Sorknæs P, Chang M, Kany MS, et al. IDAs Klimasvar 2045 - Sådan bliver vi klimaneutrale. Ingeniørforeningen IDA; 2021.

Mathiesen BV, Lund H, Nielsen S, Sorknæs P, Moreno D, Thellufsen JZ. Heat Plan Denmark 2021 - Background report (in Danish) 2021. https://vbn.aau.dk/ws/files/449742587/Varmeplan_Danmark_2021_Baggrundsrapport.pdf (accessed August 14, 2023).

Moreno D, Nielsen S, Sorknæs P, Lund H, Thellufsen JZ, Mathiesen BV. Exploring the location and use of baseload district heating supply. What can current heat sources tell us about future opportunities? Energy 2024;288. https://doi.org/10.1016/j.energy.2023.129642.

Østergaard PA, Lund H, Thellufsen JZ, Sorknæs P, Mathiesen B V. Review and validation of EnergyPLAN. Renewable and Sustainable Energy Reviews 2022;168:112724. https://doi.org/10.1016/J.RSER.2022.112724.

Lund H, Thellufsen JZ, Østergaard PA, Sorknæs P, Skov IR, Mathiesen BV. EnergyPLAN – Advanced analysis of smart energy systems. Smart Energy 2021;1. https://doi.org/10.1016/j.segy.2021.100007.

Lund H. Carbon neutral societies and smart energy systems. Renewable Energy Systems, 2024. https://doi.org/10.1016/b978-0-443-14137-9.00008-5.

Danish Energy Agency and Energinet. Technology Data – Renewable fuels - Version 4 2020. https://ens.dk/analyser-og-statistik/teknologikatalog-fornybare-braendstoffer (accessed December 16, 2024).

COWI, The Danish Energy Agency. The development of data centers and their influence on the energy system (In Danish: Udviklingen af datacentre og deres indvirkning på energisystemet) 2021.

Ea Energianalyse, Cowi, Dansk Fjernvarmes Geotermiselskab. Landsdækkende screening af geotermi i 28 fjernvarmeområder - beregning af geotermianlæg og muligheder for indpasning i fjernvarmeforsyningen 2015.

Vad Mathiesen B, Lund H, Nielsen S, Sorknæs P, Moreno D, Zinck Thellufsen J. Varmeplan Danmark 2021 2021. https://vbn.aau.dk/da/publications/varmeplan-danmark-2021-en-klimaneutral-varmeforsyning (accessed March 21, 2022).

Jiang P, Fan Y Van, Klemeš JJ. Impacts of COVID-19 on energy demand and consumption: Challenges, lessons and emerging opportunities. Appl Energy 2021;285:116441. https://doi.org/10.1016/J.APENERGY.2021.116441.

Sorknæs P, Korberg AD, Johannsen RM, Petersen UR, Mathiesen B V. CORE – Coordinated operation of integrated energy systems: WP1 - Renewable based Energy System with P2H and P2G 2020. https://vbn.aau.dk/ws/portalfiles/portal/394928507/CORE_WP1_report.pdf (accessed January 3, 2025).