Limitations and opportunities of using Hotmaps online heat atlas in heat energy planning a case study of a Hungarian rural area

Main Article Content

Csaba Csontos
https://orcid.org/0000-0001-8117-9652
Ádám Harmat
https://orcid.org/0009-0006-7054-2077
José Campos
https://orcid.org/0000-0001-5793-0776
Béla Munkácsy
https://orcid.org/0000-0003-4207-1299

Abstract

Rationalising the production and use of thermal energy would be the key to energy transition. However, in most rural areas heat planning and just transition is challenging. Energy geography solutions such as innovative online heat atlases, like Hotmaps are valuable tools for estimating household heat demand at municipality level. The aim of this study was twofold, firstly to validate the Hotmaps database with the help of field-obtained actual consumption data and to determine its usability for local thermal energy planning. Secondly to develop and test a complex methodology supporting the definition of a heating energy mix in a highly diverse landscape and energy mix in a Hungarian rural study area facing coal phase-out. The results confirmed that settlements with residential heat demand above 5,000 MWh/a could rely on the Hotmaps, however, mapping the local heating energy mix can only be done by field data collection, especially where the ratio of the solid fuels is over 50%. The heating energy mix can vastly vary even within a small geographical area which underlines the importance of in-situ rural energy mapping and makes clear the need to develop such complex but replicable methodologies as this paper has.

Article Details

How to Cite
Csontos, C., Harmat , Ádám, Campos, J., & Munkácsy, B. (2025). Limitations and opportunities of using Hotmaps online heat atlas in heat energy planning : a case study of a Hungarian rural area. International Journal of Sustainable Energy Planning and Management, 43, 85–100. https://doi.org/10.54337/ijsepm.8602
Section
Articles
Author Biographies

Csaba Csontos, Eötvös Loránd University

Department of Environmental and Landscape Geography, PhD Candidate

Ádám Harmat , Eötvös Loránd University and WWF Hungary

Department of Environmental and Landscape Geography, PhD Candiadate

José Campos, Eötvös Loránd University

Department of Environmental and Landscape Geography, PhD candidate 

Béla Munkácsy, Eötvös Loránd University

Department of Environmental and Landscape Geography, Head of Department 

References

Csernus D. Energy Without Russia The Consequences of the Ukraine War and the EU Sanctions on the Energy Sector in Europe. Friedrich-Ebert-Stiftung – Politics for Europe; 2023 https://library.fes.de/pdf-files/bueros/budapest/20509.pdf

Szép T, Pálvölgyi T, & Kármán-Tamus É. "Landscape" of energy burden: role of solid fuels in Central and Eastern European residential heating. International Journal of Sustainable Energy Planning and Management 37 (2023) pages 61–74. https://doi.org/10.54337/ijsepm.7503

Marinakis V, Haris D, Xidonas P, Zopounidis C. Multicriteria decision support in local energy planning: An evaluation of alternative scenarios for the Sustainable Energy Action Plan. Omega 69 (2017) pages 1-16. https://doi.org/10.1016/j.omega.2016.07.005

WWF Hungary. Effects of the energy crises during the 2022/23 heating season - factsheet of results of an online survey in Bulgaria, Hungary and Romania. (2023) https://wwfcee.org/pdf_collections/50/wwf-factsheet_municipality_survey_smaller_size_re.pdf

Stoeglehner G. Integrated spatial and energy planning: a means to reach sustainable development goals. Evolut Inst Econ Rev 17 (2020) pages 473–486. https://doi.org/10.1007/s40844-020-00160-7

Möller B, Nielsen S. High resolution heat atlases for demand and supply mapping. International Journal of Sustainable Energy Planning and Management 1 (2014) pages 41-58. https://doi.org/10.5278/ijsepm.2014.1.4

Edtmayer H, Fochler L-M, Mach T, Fauster J, Schwab E, & Hochenauer C. High-resolution, spatial thermal energy demand analysis and workflow for a city district. International Journal of Sustainable Energy Planning and Management 38 (2023) pages 47-64. https://doi.org/10.54337/ijsepm.7570

Grundahl L, Nielsen S. Heat atlas accuracy compared to metered data. International Journal of Sustainable Energy Planning and Management (2019) 23 pages 3-13. https://doi.org/10.5278/ijsepm.3174

Energy Cities. The Hotmaps Toolbox supporting strategic heating & cooling planning at local level. Hotmaps project; (2020) https://www.hotmaps-project.eu/wp-content/uploads/2020/09/brochure-hotmaps-2020-web.pdf

Nielsen S. A geographic method for high resolution spatial heat planning. Energy 67 (2014) pages 351-362. https://doi.org/10.1016/j.energy.2013.12.011

Möller B, Wiechers E, Persson, U, Grundahl L, & Connolly D. Heat Roadmap Europe: Identifying local heat demand and supply areas with a European thermal atlas. Energy 158 (2018) pages 281-292. https://doi.org/10.1016/j.energy.2018.06.025

Möller B, Wiechers, E, Persson, U, Grundahl, L, Lund RS, & Mathiesen BV. Heat Roadmap Europe: Towards EU-Wide, local heat supply strategies. Energy 177 (2019) pages 554-564 https://doi.org/10.1016/j.energy.2019.04.098

Djørup SR, Bertelsen N, Mathiesen BV, Schneider NCA. Definition & Experiences of Strategic Heat Planning: Handbook I. Hotmaps project 2019 https://www.hotmaps-project.eu/wp-content/uploads/2019/04/Handbook-I.pdf

Fallahnejad M. Heat density maps of Europe and ways to improve the accuracy, TU Wien - Energy Economics Group 2017 https://www.eeg.tuwien.ac.at/conference/iaee2017/files/presentation/Pr_498_Fallahnejad_Mostafa.pdf

Vollersen JF. Assessment of data integration and data links between urban building energy models and urban heat planning tools - A case study on a district in the city of Kiel with a focus on the demand side using MITs UBEM and the Hotmaps toolbox. Vienna: TU-Wien 2022 https://repositum.tuwien.at/bitstream/20.500.12708/19896/1/Vollersen%20Jan%20Flemming%20-%202022%20-%20Assessment%20of%20data%20integration%20and%20data%20links...pdf

Müller A, Hummel M, Kranzl L, Fallahnejad M, Büchele R. Open Source Data for Gross Floor Area and Heat Demand Density on the Hectare Level for EU 28. Energies 12(24) (2019) pages 47-89. https://doi.org/10.3390/en12244789

Pieper H. GIS-based Approach to Identifying Potential Heat Sources for Heat Pumps and Chillers Providing District Heating and Cooling. International Journal of Sustainable Energy Planning and Management 34 (2022) pages 29–44. https://doi.org/10.54337/ijsepm.7021

Pezzutto S, Zambotti S, Croce S, Zambelli P, Garegnani G, Scaramuzzino C, Pascual R, Haas F, Exner D, Lucchi E, Della Valle N, Zubaryeva A, Müller A, Hartner M, Fleiter T, Klingler AL, Kühnbach M, Manz P, Marwitz S, Rehfeldt M, Steinbach J, Popovski E. D2.3 WP2 Report – Open Data Set for the, Hotmaps. Hotmaps project; (2019) https://www.hotmaps-project.eu/wp-content/uploads/2018/03/D2.3-Hotmaps_for-upload_revised-final_.pdf

Doukas H, Papadopoulou A, Savvakis N, Tsoutsos T, Psarras J. Assessing energy sustainability of rural communities using Principal Component Analysis. Renewable and Sustainable Energy Reviews, 16 (2012) pages 1949-1957. https://doi.org/10.1016/j.rser.2012.01.018

Peng L, Zhang Q, Yao Z, Mauzerall DL, Kang S, Du Z, Zheng Y, Xue T, He K. Underreported coal in statistics: A survey-based solid fuel consumption and emission inventory for the rural residential sector in China. Applied Energy 235 (2019), pages 1169-1182. https://doi.org/10.1016/j.apenergy.2018.11.043

Ma XW, Wang M, Lan JK, Li CD, Zou LL. Influencing factors and paths of direct carbon emissions from the energy consumption of rural residents in central China determined using a questionnaire survey. Advances in Climate Change Research 13 (2022) pages 759-767. https://doi.org/10.1016/j.accre.2022.06.008

Yu H, Bergaentzlé C, Petrović S, Ahlgren EO, Johnsson F. Combining techno-economic modeling and spatial analysis for heat planning in rural regions: A case study of the Holbæk municipality in Denmark. Smart Energy 14, (2024) pages 2666-9552.

https://doi.org/10.1016/j.segy.2024.100144

Campos J, Csontos Cs, Harmat Á, Csüllög G, Munkácsy B. Heat consumption scenarios in the rural residential sector: the potential of heat pump-based demand-side management for sustainable heating. Energy Sustainability And Society 10 (2020) pages 1-16. http://doi.org/10.1186/s13705-020-00271-4

Csontos Cs, Soha T, Harmat Á, Campos J, Csüllög G, Munkácsy B. Spatial analysis of renewable-based hybrid district heating possibilities in a Hungarian rural area. International Journal of Sustainable Energy Planning and Management 28 (2020) pages 17-36. https://doi.org/10.5278/ijsepm.3661

CSO (Central Statistical Office). Tájékoztatási adatbázis. KSH 2024 http://statinfo.ksh.hu/Statinfo

Ministry for Economic Affairs Labour and Energy - Brandenburg. Needs Analysis Report on Environmental Restitution and Land Restoration in DeCarb Regions. DeCarb Regions 2019 https://projects2014-2020.interregeurope.eu/fileadmin/user_upload/tx_tevprojects/library/file_1580819578.pdf

Toth AN, Nyikos A, Fenerty DK. Prospects for geothermal power projects in Hungary. In Proceedings of European geothermal congress, Den Haag, The Netherlands: 2019 https://www.researchgate.net/publication/333774313_Prospects_for_geothermal_power_projects_in_Hungary

Magyar Bányászati és Földtani Szolgálat Országos Geotermikus Rendszer, OGrE. 2020 https://map.mbfsz.gov.hu/ogre/

EC (European Commission). Proposal for a Regulation of the European Parliament and of the Council establishing the Just Transition Fund 2020 https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1579099555315&uri=COM:2020:22:FIN

EC (European Commission). Initiative for coal regions in transition, https://energy.ec.europa.eu/topics/oil-gas-and-coal/eu-coal-regions/initiative-coal-regions-transition_en

CSO (Central Statistical Office). Elégedettség alakulása régió és településtípus szerint. KSH 2024 https://www.ksh.hu/stadat_files/ele/hu/ele0021.html

CSO (Central Statistical Office). Egy főre jutó bruttó és nettó jövedelem régió és településtípus szerint. KSH 2023 https://www.ksh.hu/stadat_files/jov/hu/jov0045.html

Weiner Cs, Szép T. The Hungarian utility cost reduction programme: An impact assessment. Energy Strategy Reviews 40 (2022) pages 2211-467. https://doi.org/10.1016/j.esr.2022.100817

Tóth G, Jáger V, Kovalszky Z, Bóday P, Ádám D, Kincses Á, Szép T. Characteristics of household energy consumption in the shadow of the Russia-Ukraine war - a case study from Hungary. International Journal of Sustainable Energy Planning and Management, 40 (2024) pages 55-74. https://doi.org/10.54337/ijsepm.8014

Khalil MA, Fatmi MR. How Residential Energy Consumption Has Changed due to COVID-19? An agent-based Model. Sustainable Cities and Society 81 (2022) pages 1-14. https://doi.org/10.1016/j.scs.2022.103832

Csoknyai T, Hrabovszky-Horváth S, Georgiev Z, Jovanovic-Popovic M, Stankovic B, Villatoro O, Szendrő G. Building stock characteristics and energy performance of residential buildings in Eastern-European countries. Energy and Buildings 132 (2016) pages 39-52. http://doi.org/10.1016/j.enbuild.2016.06.062

Forest Research, Moisture content. 2024 https://www.forestresearch.gov.uk/tools-and-resources/biomass-energy-resources/reference-biomass/facts-figures/moisture-content/

Mátra Power Plant Ltd (Mátrai Erőmű Zrt). Tájékoztató lakossági szénértékesítésről. 2024 https://mert.mvm.hu/hu-HU/Rolunk/Szenertekesites

Hotmaps, Online Heat Atlas. 2024 https://www.hotmaps.hevs.ch/map

Lavrinenko PA, Mikhailova TN, Romashina AA, Chistyakov PA. Agglomeration Effect as a Tool of Regional Development. Stud Russ Econ Dev 30 (2019) pages 20268–274. https://doi.org/10.1134/S1075700719030109

Herrando M, Gómez A; Fueyo N. Supporting Local Authorities to Plan Energy Efficiency in Public Buildings: From Local Needs to Regional Planning. Energies 15 (2022) pages 1-17. https://doi.org/10.3390/en15030907

Owen A, Middlemiss L, Brown D, Davis M, Hall S, Bookbinder R, Brisbois MC, Cairns I, Hannon M, Mininni G. Who applies for energy grants? Energy Research & Social Science 101 (2023) pages 103-123. https://doi.org/10.1016/j.erss.2023.103123

Hungarian Energy and Public Utility Regulatory Office (Magyar Energetikai és Közmű-szabályozási Hivatal). Az energiafogyasztás csökkent, a földgáz tárolói készletszint tovább emelkedett októberben. 2023 http://mekh.hu/az-energiafogyasztas-csokkent-a-foldgaz-taroloi-keszletszint-tovabb-emelkedett-oktoberben

Energy Poverty Advisory Hub. Bükkszentkereszt Hungary, Results 2nd technical assistance of the EPAH 2023-2024 https://energy-poverty.ec.europa.eu/system/files/2024-10/B%C3%BCkkszentkereszt_EPAH23_TAPOSTER.pdf