Stakeholder-informed multi-criteria decision-making for sustainable heat supply

Main Article Content

Alwina Kaiser
https://orcid.org/0009-0003-0008-6131
Anna Marie Cadenbach
https://orcid.org/0000-0002-9893-7728
Friedrich Krebs
https://orcid.org/0000-0002-4104-8751

Abstract

The heating transition presents municipalities with the challenge of integrating technical, economic, and socially acceptable aspects into the planning and implementation of climate-neutral heating systems. This paper introduces a Multi-Criteria Decision Analysis (MCDA) approach to support heat planning processes. The goal is to facilitate investment decisions by incorporating the priorities of various stakeholders and evaluating heating supply options based on a shared factual basis. At the same time, conflicts of interest are identified and addressed. The developed decision-making model consists of six steps, including the selection and weighting of criteria as well as the evaluation of alternative scenarios. The methodology was applied within the WAERMER project, supported by stakeholder participation and a prototype interactive visualization. The evaluation is based on twelve quantitative and qualitative criteria across the categories of environment, economy, technology, and social compatibility. Using a case study in an urban district of a mid-sized city in Northern Germany, scenarios were compared to identify optimal solutions for heat supply. The paper illustrates how a participatory MCDA process can support municipal heat planning by making stakeholder priorities visible and enabling transparent scenario evaluation. While implementation remains context-dependent, the structured approach lays a foundation for informed and socially accepted planning decisions.

Article Details

How to Cite
Kaiser, A., Cadenbach, A. M., & Krebs, F. (2025). Stakeholder-informed multi-criteria decision-making for sustainable heat supply. International Journal of Sustainable Energy Planning and Management, 47, 104–118. https://doi.org/10.54337/ijsepm.9698
Section
Articles

References

[1] Umweltbundesamt, "Energieverbrauch nach Energieträgern & Sektoren. [online]," 2024. [Online]. Available: https://www.umweltbundesamt.de/daten/energie/energieverbrauch-nach-energietraegern-sektoren#entwicklung-des-endenergieverbrauchs-nach-sektoren-und-energietragern. [Accessed 26 11 2024].

[2] Umweltbundesamt, "Energieverbrauch für fossile und erneuerbare Wärme," 2024. [Online]. Available: https://www.umweltbundesamt.de/daten/energie/energieverbrauch-fuer-fossile-erneuerbare-waerme. [Accessed 26 11 2024].

[3] S. Paardekooper, R. S. Lund, B. V. Mathiesen, M. Chang, U. R. Petersen, L. Grundahl, A. David and Dahlbæk, "Heat Roadmap Germany: Quantifying the Impact of Low-Carbon Heating and Cooling Roadmaps," 2018. [Online]. Available: https://vbn.aau.dk/en/publications/heat-roadmap-germany-quantifying-the-impact-of-low-carbon-heating. [Accessed 15 5 2025].

[4] M. Jordan, D. Thrän, M. Groß, F. Hüesker, K. Siegfried, C. Rösch, E. Schill, B. Best and P. Wolf, "Gesellschaftliche Akzeptanz der Wärmewende: Aktuelle Forschung, Fallbeispiele und sozialverträgliche Lösungsansätze.," 2022. [Online]. Available: https://www.fvee.de/wp-content/uploads/2023/06/th2022_02_01.pdf. [Accessed 26 11 2024].

[5] P. Devine-Wright, Rethinking NIMBYism: The Role of Place Attachment and Place Identity in Explaining Place-Protective Action. Journal of Community & Applied Social Psychology 19 (2009) p. 426 - 441. https://doi.org/10.1002/casp.1004.

[6] M. Matußek, J. Fjornes and J. Becker, "Akteur*innen der energetischen Entwicklung des von einkommensschwachen Haushalten bewohnten Gebäudesektors.," 2022. [Online]. Available: https://adelphi.de/de/publikationen/akteurinnen-der-energetischen-entwicklung-des-von-einkommensschwachen-haushalten. [Accessed 26 11 2024].

[7] S. Wolf, S. Fürst, A. Geiges, M. Laublichler, J. Mielke und G. e. a. Steudle, The Decision Theatre Triangle for societal challenges—An example case and research needs. Journal of Cleaner Production 394 (2023) 136299. https://doi.org/10.1016/j.jclepro.2023.136299.

[8] M. Cinelli, S. R. Coles und K. & Kirwan, Analysis of the potentials of multi criteria decision analysis methods to conduct sustainability assessment. Ecological Indicators 46 (2014) p.138-148. https://doi.org/10.1016/j.ecolind.2014.06.011, p. 138–148.

[9] J.-J. Wang, Y.-Y. Jing, C.-F. Zhang und J.-H. Zhao, Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renewable and Sustainable Energy Reviews 13 (9) (2009) p. 2263–2278. https://doi.org/10.1016/j.rser.2009.06.021, 2009, p. 2263–2278.

[10] K. Gupta und E. O. Ahlgren, Analysis of City Energy Systems Modeling Case Studies: A Systematic Review. International Journal of Sustainable Energy Planning and Management 43 (2025) p. 123–139. https://doi.org/10.54337/ijsepm.9335.

[11] R. Lahdelma, P. Salminen und J. Hokkanen, Using multicriteria methods in environmental planning and management. Environmental management 26 (6) (2000) p. 595–605. http//doi.org/10.1007/s002670010118, p. S. 595–605.

[12] C. Banville, M. Landry, J.-M. Martel und C. Boulaire, A stakeholder approach to MCDA. Syst. Res. 15 (1) (1998) p.15-32. https://doi.org/10.1002/(SICI)1099-1743(199801/02)15:1%3C15::AID-SRES179%3E3.0.CO;2-B, p. 15–32.

[13] S. Gustafsson, J. Ivner und J. Palm, Management and stakeholder participation in local strategic energy planning – Examples from Sweden. Journal of Cleaner Production 98 (2015) p.205-212. https://doi.org/10.1016/j.jclepro.2014.08.014, p. 205–212.

[14] A. R. Neves, V. Leal und J. C. Lourenço, A methodology for sustainable and inclusive local energy planning. Sustainable Cities and Society 17 (2015) p. 110-121. https://doi.org/10.1016/j.scs.2015.04.005, p. 110–121.

[15] F. Del-Busto, M. D. Mainar-Toledo und V. Ballestín-Trenado, Participatory Process Protocol to Reinforce Energy Planning on Islands: A Knowledge Transfer in Spain. International Journal of Sustainable Energy Planning and Management 34 (2022) p. 5–18. http://doi.org/10.54337/ijsepm.7090.

[16] N. Edomah, Who triggers change? Social network mapping, stakeholder analysis and energy systems interventions in Nigeria’s electricity sector. International Journal of Sustainable Energy Planning and Management 37 (2023) p. 5–20. http://doi.org/10.54337/ijsepm.7246.

[17] I. Wilkens, Multikriterielle Analyse zur Nachhaltigkeitsbewertung von Energiesystemen – Von der Theorie zur praktischen Anwendung. Dissertation. https://doi.org/10.14279/depositonce-3385, 2012.

[18] P. Østergaard, Reviewing optimisation criteria for energy systems analyses of renewable energy integration. Energy 34 (9) (2009) p. 1236-1245. http://doi.org/10.1016/j.energy.2009.05.004, p. 1236–1245.

[19] D. Moreno, S. Y. M. Nielsen und F. Dahl Nielsen, The ODHeatMap tool: Open data district heating tool for sustainable energy planning. International Journal of Sustainable Energy Planning and Management 42 (2024) p. 48–71. http://doi.org/10.54337/ijsepm.8812.

[20] P. Miraj und M. A. Berawi, Multi-Criteria Decision Making for Photovoltaic Alternatives: A Case Study in Hot Climate Country . International Journal of Sustainable Energy Planning and Management 30 (2021). https://doi.org/10.5278/ijsepm.5897.

[21] A. H. I. Lee, H. H. Chen und H. Y. Kang, Multi-criteria decision making on strategic selection of wind farms. Renewable Energy, 34(1) (2009) p.120-126. http//doi.org/10.1016/j.renene.2008.04.013, p. 120–126.

[22] A. Delgado und I. Romero, Environmental conflict analysis using an integrated grey clustering and entropy-weight method: A case study of a waste incineration project in Peru. Environmental Modelling & Software, 77 (2016) p. 108-121. http://doi.org/10.1016/j.envsoft.2015.12.011.

[23] R. A. Estévez, V. Espinoza, R. D. Ponce Oliva, F. Vásquez-Lavín und S. Gelcich, Multi-Criteria Decision Analysis for Renewable Energies: Research Trends, Gaps and the Challenge of Improving Participation. Sustainability 13 (6) (2021) p.3515. https://doi.org/10.3390/su13063515, p. 3515.

[24] M. Blesl, M. Koziol, M. Köppl and W. Ben, "Praxisleitfaden. Kommunale Wärmeplanung," 2023. [Online]. Available: https://www.dvgw.de/medien/dvgw/leistungen/publikationen/leitfaden-kommunale-waermeplanung-dvgw-agfw.pdf. [Accessed 26 11 2024].

[25] Association of German Engineers, "VDI 2067 Part 1: Economic efficiency of building installations – Fundamentals and economic calculation*. Düsseldorf: Beuth Verlag; 2012.," [Online]. Available: https://www.vdi.de/richtlinien/details/vdi-2067-blatt-1-wirtschaftlichkeit-gebaeudetechnischer-anlagen-grundlagen-und-kostenberechnung-1. [Accessed 08 08 2024].

[26] I. Digel, S. Holzhauer und F. Krebs, Exploring investment decisions in home heating system replacement with a multi-stage algorithm: An agent-based model. In: Elsenbroich C, Verhagen H, editors. Advances in Social Simulation. Cham: Springer (2024) http://doi.org/10.1007/978-3-031-57785-7_12.

[27] Stadtwerke Kiel, "Preise und Bedingungen – Fernwärme," 2023. [Online]. Available: https://www.stadtwerke-kiel.de/privatkunden/angebote-tarife/waerme/fernwaerme/preise-bedingungen. [Accessed 26 11 2024].

[28] KEA Klimaschutz- und Energieagentur Baden-Württemberg GmbH, "Technikkatalog zur kommunalen Wärmeplanung.," 2024. [Online]. Available: https://www.kea-bw.de/waermewende/wissensportal/kommunale-waermeplanung/einfuehrung-in-den-technikkatalog. [Accessed 26 11 2024].

[29] R. Mendelevitch, H. Förster, K. Schuma and J. Deurer, "Treibhausgas-Projektionen 2024 für Deutschland. Erstellung der Endverbrauchspreise für Energieträger. https://doi.org/10.60810/openumwelt-7576," 2024. [Online]. Available: https://openumwelt.de/handle/123456789/10483. [Accessed 26 11 2024].

[30] M. Pehnt, P. Mellwig, K. Lambrecht, B. Winiewska, B. Oschatz, B. Mailach, F. Keimeyer, S. Braungardt, B. Köhler and H. Kahl, "Heizen mit 65 % erneuerbaren Energien – Begleitende Analysen zur Ausgestaltung der Regelung aus dem Koalitionsvertrag 2021. Teilbericht im Rahmen des Projekts „Gebäudeenergiegesetz und EPBD"," 2023. [Online]. Available: https://www.oeko.de/publikation/heizen-mit-65-erneuerbaren-energien-begleitende-analysen-zur-ausgestaltung-der-regelung-aus-dem-koalitionsvertrag-2021/. [Accessed 01 11 2024].

[31] R. O. Harthan, H. Förster, K. Borkowski, H. Böttcher, S. Braungardt, V. Bürger, L. Emele and e. al., "Rahmendaten für den Projektionsbericht 2023. Climate Change 39/2023," 2023. [Online]. Available: https://www.umweltbundesamt.de/publikationen/rahmendaten-fuer-den-projektionsbericht-2023. [Accessed 01 11 2024].

[32] S. Nielsen, P. Sorknæs, B. Vad Mathiesen, H. Lund, D. Moreno und J. Zinck Thellufsen, Heating Sector Strategies in Climate-Neutral Societies. International Journal of Sustainable Energy Planning and Management 43 (2025) p. 101–122. https://doi.org/10.54337/ijsepm.8554.