Optimal biorefinery design and supply chain for the production of sugarcane bagasse pellets, electricity and bioethanol in Colombia

Main Article Content

Jorge Eduardo Infante Cuan
https://orcid.org/0009-0000-1480-8949
Victor Fernandes Garcia
https://orcid.org/0000-0002-7759-931X
Adriano Viana Ensinas
https://orcid.org/0000-0002-8354-4948

Abstract

Biofuels are considered an alternative to sustainable energy production due to their potential to reduce greenhouse gas emissions. This paper presents a mixed integer linear programming (MILP) model to evaluate the optimal configuration of a supply chain for the production of bioethanol, electricity and bagasse pellets from sugarcane potential in Colombia. The results show that gasoline demand in Colombia is met through bioethanol production, and the demand for coal used in thermoelectric plants can be met through the production of bagasse pellets from 17 biorefineries located in 13 study regions. The avoided emissions represent 25.17% of the target proposed by the Colombian government, and transport emissions represent only 2.62% of the emissions generated by the model. Despite the promising results obtained in the optimization of the supply chain for bioethanol and bagasse pellet production in Colombia, there are challenges and limitations that must be considered. One of the main challenges lies in the uncertainty associated with the variability in biomass, bioethanol, and carbon credit prices, which can affect the long-term economic viability of the project. The sustainability of land use for sugarcane production must be assessed with a more detailed approach to avoid conflicts with food production and ecosystem conservation. These aspects represent key opportunities for future research and improvements in strategic planning for the bioenergy sector. Finally, the sensitivity analysis shows that the ±20% variation in the price of sugarcane and the price of bioethanol have a high impact on the payback period with respect to the base case.

Article Details

How to Cite
Infante Cuan, J. E., Fernandes Garcia, V., & Viana Ensinas , A. (2025). Optimal biorefinery design and supply chain for the production of sugarcane bagasse pellets, electricity and bioethanol in Colombia. International Journal of Sustainable Energy Planning and Management, 45, 5–22. https://doi.org/10.54337/ijsepm.9744
Section
Articles

References

[1] International Energy Agency. CO2 Emissions From Fuel Combustion 2015.

[2] Miraj P, Berawi MA. Multi-Criteria Decision Making for Photovoltaic Alternatives: A Case Study in Hot Climate Country. Int J Sustain Energy Plan Manag 2021;30.

[3] Cruz-Reina LJ, Flórez-Rojas JS, López G-D, Herrera-Orozco I, Carazzone C, Sierra R. Obtention of fatty acids and phenolic compounds from Colombian cashew (Anacardium occidentale) nut shells using pyrolysis: towards a sustainable biodiesel production. Heliyon 2023;9:e18632. https://doi.org/10.1016/j.heliyon.2023.e18632.

[4] Singh B, Guldhe A, Rawat I, Bux F. Towards a sustainable approach for development of biodiesel from plant and microalgae. Renew Sustain Energy Rev 2014;29:216–45. https://doi.org/10.1016/j.rser.2013.08.067.

[5] Davis SJ, Lewis NS, Shaner M, Aggarwal S, Arent D, Azevedo IL, et al. Net-zero emissions energy systems. Science 2018;360:eaas9793. https://doi.org/10.1126/science.aas9793.

[6] Ghionda F, Sartori A, Liu Z, Mahbub MS, Pilati F, Brunelli M, et al. Optimizing the integration of renewable energy sources, energy efficiency, and flexibility solutions in a multi-network pharmaceutical industry. Int J Sustain Energy Plan Manag 2024;41:87–107. https://doi.org/10.54337/ijsepm.8167.

[7] Canabarro NI, Silva-Ortiz P, Nogueira LAH, Cantarella H, Maciel-Filho R, Souza GM. Sustainability assessment of ethanol and biodiesel production in Argentina, Brazil, Colombia, and Guatemala. Renew Sustain Energy Rev 2023;171:113019. https://doi.org/10.1016/j.rser.2022.113019.

[8] Kheybari S, Kazemi M, Rezaei J. Bioethanol facility location selection using best-worst method. Appl Energy 2019;242:612–23. https://doi.org/10.1016/j.apenergy.2019.03.054.

[9] Moncada B. J, Aristizábal M. V, Cardona A. CA. Design strategies for sustainable biorefineries. Biochem Eng J 2016;116:122–34. https://doi.org/10.1016/j.bej.2016.06.009.

[10] Chlela S, Selosse S. Water use in a sustainable net zero energy system: what are the implications of employing bioenergy with carbon capture and storage? Int J Sustain Energy Plan Manag 2024;40:146–62. https://doi.org/10.54337/ijsepm.8159.

[11] Ladanai S, Vinterbäck J. SLU, Swedish University of Agricultural Sciences Department of Energy and Technology n.d.

[12] Torre L. Biomass estimation using LiDAR data. Int J Sustain Energy Plan Manag 2018;17:79–90. https://doi.org/10.5278/ijsepm.2018.17.7.

[13] Ioannou K, Tsantopoulos G, Arabatzis G, Andreopoulou Z, Zafeiriou E. A Spatial Decision Support System Framework for the Evaluation of Biomass Energy Production Locations: Case Study in the Regional Unit of Drama, Greece. Sustainability 2018;10:531. https://doi.org/10.3390/su10020531.

[14] Gumte KM, Mitra K. Bio-Supply Chain Network Design to tackle ethanol deficiency in India: A mathematical framework. J Clean Prod 2019;234:208–24. https://doi.org/10.1016/j.jclepro.2019.06.160.

[15] International Energy Agency. Net Zero by 2050 - A Roadmap for the Global Energy Sector 2021:222.

[16] Koul B, Yakoob M, Shah MP. Agricultural waste management strategies for environmental sustainability. Environ Res 2022;206:112285. https://doi.org/10.1016/j.envres.2021.112285.

[17] U.S. Department of Energy. National Algal Biofuels Technology Roadmap 2010.

[18] Romero C, Ernst C, Epifanio D, Ferro G. Bioenergy and Employment. A Regional Economic Impact Evaluation. Int J Sustain Energy Plan Manag 2023;37:95–108. https://doi.org/10.54337/ijsepm.7474.

[19] International Renewable Energy Agency. World Energy Transitions Outlook: 1.5°C Pathway 2021.

[20] Valencia MJ, Cardona CA. The Colombian biofuel supply chains: The assessment of current and promising scenarios based on environmental goals. Energy Policy 2014;67:232–42. https://doi.org/10.1016/j.enpol.2013.12.021.

[21] International Energy Agency. Colombia 2023 – Analysis. IEA 2023. https://www.iea.org/reports/colombia-2023 (accessed November 23, 2023).

[22] González-Aguirre J-A, Solarte-Toro JC, Cardona Alzate CA. Supply chain and environmental assessment of the essential oil production using Calendula (Calendula Officinalis) as raw material. Heliyon 2020;6:e05606. https://doi.org/10.1016/j.heliyon.2020.e05606.

[23] Özdenkçi K, De Blasio C, Muddassar HR, Melin K, Oinas P, Koskinen J, et al. A novel biorefinery integration concept for lignocellulosic biomass. Energy Convers Manag 2017;149:974–87. https://doi.org/10.1016/j.enconman.2017.04.034.

[24] Aristizábal-Marulanda V, Cardona A. CA. Experimental production of ethanol, electricity, and furfural under the biorefinery concept. Chem Eng Sci 2021;229:116047. https://doi.org/10.1016/j.ces.2020.116047.

[25] Ortiz-Sanchez M, Solarte-Toro JC, Cardona-Alzate C. A comprehensive approach for biorefineries design based on experimental data, conceptual and optimization methodologies: The orange peel waste case. Bioresour Technol 2021;325:124682. https://doi.org/10.1016/j.biortech.2021.124682.

[26] Cañon C, Sanchez N, Cobo M. Sustainable production of ethyl levulinate by levulinic acid esterification obtained from Colombian rice straw. J Clean Prod 2022;377:134276. https://doi.org/10.1016/j.jclepro.2022.134276.

[27] Khatiwada D, Leduc S, Silveira S, McCallum I. Optimizing ethanol and bioelectricity production in sugarcane biorefineries in Brazil. Renew Energy 2016;85:371–86. https://doi.org/10.1016/j.renene.2015.06.009.

[28] IEA Bioenergy. Biorefining in a Future BioEconomy n.d.

[29] Harahap F, Leduc S, Mesfun S, Khatiwada D, Kraxner F, Silveira S. Meeting the bioenergy targets from palm oil based biorefineries: An optimal configuration in Indonesia. Appl Energy 2020;278:115749. https://doi.org/10.1016/j.apenergy.2020.115749.

[30] Ezzati F, Babazadeh R, Donyavi A. Optimization of multimodal, multi-period and complex biodiesel supply chain systems: Case study. Renew Energy Focus 2018;26:81–92. https://doi.org/10.1016/j.ref.2018.07.005.

[31] Hasibi RAA, Bawan EK. An Analysis of the Impact of the Covid-19 Pandemic on the Implementation of Renewable Energy in the Supply of Electricity. Int J Sustain Energy Plan Manag 2023;39:3–21. https://doi.org/10.54337/ijsepm.7659.

[32] Eksioglu SD, Rebennack S, Pardalos PM, editors. Handbook of Bioenergy: Bioenergy Supply Chain - Models and Applications. Cham: Springer International Publishing; 2015. https://doi.org/10.1007/978-3-319-20092-7.

[33] Aristizábal-Marulanda V, Cardona A. CA, Martín M. Supply chain of biorefineries based on Coffee Cut-Stems: Colombian case. Chem Eng Res Des 2022;187:174–83. https://doi.org/10.1016/j.cherd.2022.08.060.

[34] Castro-Peña MY, Peñuela CA, González JG. Design of a supply chain to produce ethanol from one residuum and two coffee by-products. Uncertain Supply Chain Manag 2019:767–82. https://doi.org/10.5267/j.uscm.2019.1.003.

[35] Duarte AE, Sarache WA, Costa YJ. A facility-location model for biofuel plants: Applications in the Colombian context. Energy 2014;72:476–83. https://doi.org/10.1016/j.energy.2014.05.069.

[36] Haji Esmaeili SA, Sobhani A, Ebrahimi S, Szmerekovsky J, Dybing A, Keramati A. Location Allocation of Biorefineries for a Switchgrass-Based Bioethanol Supply Chain Using Energy Consumption and Emissions. Logistics 2023;7:5. https://doi.org/10.3390/logistics7010005.

[37] Ge Y, Li L, Yun L. Modeling and economic optimization of cellulosic biofuel supply chain considering multiple conversion pathways. Appl Energy 2021;281:116059. https://doi.org/10.1016/j.apenergy.2020.116059.

[38] Gutierrez-Franco E, Polo A, Clavijo-Buritica N, Rabelo L. Multi-Objective Optimization to Support the Design of a Sustainable Supply Chain for the Generation of Biofuels from Forest Waste. Sustainability 2021;13:7774. https://doi.org/10.3390/su13147774.

[39] Rahemi H, Torabi SA, Avami A, Jolai F. Bioethanol supply chain network design considering land characteristics. Renew Sustain Energy Rev 2020;119:109517. https://doi.org/10.1016/j.rser.2019.109517.

[40] Solis CM, San Juan JL, Cruz D. A Multi-Objective Optimization Model for an Algal Biofuel Supply Chain Integrating Resource Recirculation. vol. 11, IEOM Society; 2021. https://doi.org/10.46254/AN11.20210010.

[41] Ren J, Manzardo A, Toniolo S, Scipioni A, Tan S, Dong L, et al. Design and modeling of sustainable bioethanol supply chain by minimizing the total ecological footprint in life cycle perspective. Bioresour Technol 2013;146:771–4. https://doi.org/10.1016/j.biortech.2013.07.119.

[42] Infante JE, Garcia VF, Ensinas AV. Optimal superstructure model of sugarcane-microalgae based biorefinery. WASTES Solut. Treat. Oppor. IV, CRC Press; 2023.

[43] Ng RTL, Maravelias CT. Design of biofuel supply chains with variable regional depot and biorefinery locations. Renew Energy 2017;100:90–102. https://doi.org/10.1016/j.renene.2016.05.009.

[44] Carvajal J, Sarache W, Costa Y. Addressing a robust decision in the sugarcane supply chain: Introduction of a new agricultural investment project in Colombia. Comput Electron Agric 2019;157:77–89. https://doi.org/10.1016/j.compag.2018.12.030.

[45] Garcia VF, Ensinas AV. Simultaneous Optimization and Integration of Multiple Process Heat Cascade and Site Utility Selection for the Design of a New Generation of Sugarcane Biorefinery. Entropy 2024;26:501. https://doi.org/10.3390/e26060501.

[46] LINGO. Lingo Systems Inc 2022.

[47] Pina EA, Palacios-Bereche R, Chavez-Rodriguez MF, Ensinas AV, Modesto M, Nebra SA. Reduction of process steam demand and water-usage through heat integration in sugar and ethanol production from sugarcane – Evaluation of different plant configurations. Energy 2017;138:1263–80. https://doi.org/10.1016/j.energy.2015.06.054.

[48] Santos RF, Borsoi A, Secco D, Melegari De Souza SN, Constanzi RN. Brazil’s Potential for Generating Electricity from Biogas from Stillage, 2011, p. 425–32. https://doi.org/10.3384/ecp11057425.

[49] Fuess LT, Zaiat M. Economics of anaerobic digestion for processing sugarcane vinasse: Applying sensitivity analysis to increase process profitability in diversified biogas applications. Process Saf Environ Prot 2018;115:27–37. https://doi.org/10.1016/j.psep.2017.08.007.

[50] Jarunglumlert T, Bampenrat A, Sukkathanyawat H, Pavasant P, Prommuak C. Enhancing the potential of sugarcane bagasse for the production of ENplus quality fuel pellets by torrefaction: an economic feasibility study. Biofuel Res J 2022;9:1707–20. https://doi.org/10.18331/BRJ2022.9.4.2.

[51] Pereira IZ, Santos IFSD, Barros RM, Castro E Silva HLD, Tiago Filho GL, Moni E Silva AP. Vinasse biogas energy and economic analysis in the state of São Paulo, Brazil. J Clean Prod 2020;260:121018. https://doi.org/10.1016/j.jclepro.2020.121018.

[52] Sistema de Información para la Planificación Rural Agropecuaria. Planificación rural agropecuaria n.d. https://sipra.upra.gov.co/nacional (accessed November 3, 2023).

[53] Ministerio de Minas y Energía. Distribuidores Mayoristas: Despacho de combustibles líquidos a nivel nacional n.d. https://www.datos.gov.co/Minas-y-Energ-a/Distribuidores-Mayoristas-Despacho-de-combustibles/339g-zjac/about_data (accessed November 22, 2023).

[54] DatosMacro. Colombia - Consumo de electricidad 2022 n.d. https://datosmacro.expansion.com/energia-y-medio-ambiente/electricidad-consumo/colombia (accessed November 22, 2024).

[55] UPME. Consumo de Combustible n.d. http://www.upme.gov.co/Reports/Default.aspx?ReportPath=%2fSIEL+UPME%2fGeneraci%u00f3n%2fConsumo+de+Combustible+(SIN) (accessed November 1, 2024).

[56] SIMCO. Carbon n.d. https://www1.upme.gov.co/simco/Cifras-Sectoriales/Paginas/carbon.aspx (accessed November 12, 2023).