LCOE at risk in different locations in Colombia
Main Article Content
Abstract
The development of renewable energy (RE) projects is closely tied to the financial attractiveness of these investments. Despite the extensive literature, most studies focus on a static analysis, which is no longer adequate for dealing properly with the uncertainty associated with RE projects. This study proposes a stochastic model based on the levelized cost of energy (LCOE) and the application of VaR (value at risk) and CvaR (conditional value at risk) measures for risk assessment. Using a hypothetical case consisting of a solar farm with a rated capacity of 10 MWp, the analysis was conducted for nine Colombian municipalities. The irradiation levels at each site were considered the sole source of uncertainty. In addition, the Colombian regulatory framework was considered, represented by accounting and tax benefits. The results obtained from this work made it possible to evaluate the effect of resource behavior on the financial risk level of PV projects. The results provide a ranking of the nine assessed municipalities from a financial point of view and highlight the influence of considering solar resources as a risk factor on the project´s financial expected performance.
Article Details
Articles published in International Journal of Sustainable Energy Planning and Management are following the license Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0)
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License: Attribution - NonCommercial - NoDerivs (by-nc-nd). Further information about Creative Commons
Authors can archive post-print (final draft post-refereering) on personal websites or institutional repositories under these conditions:
- Publishers version cannot be stored elsewhere but on publishers homepage
- Published source must be acknowledged
- Must link to publisher version
References
[1] Tushar Q, Zhang G, Giustozzi F, Bhuiyan MA, Hou L, Navaratnam S. An integrated financial and environmental evaluation framework to optimize residential photovoltaic solar systems in Australia from recession uncertainties. J Environ Manage 346 (2023) p 119002. https://doi.org/10.1016/j.jenvman.2023.119002.
[2] Firouzjah KG. Assessment of small-scale solar PV systems in Iran: Regions priority, potentials and financial feasibility. Renewable and Sustainable Energy Reviews 94 (2018) p 267–74. https://doi.org/10.1016/j.rser.2018.06.002.
[3] Bosch J, Staffell I, Hawkes AD. Global levelised cost of electricity from offshore wind. Energy 189 (2019) p 116357. https://doi.org/10.1016/j.energy.2019.116357.
[4] Enerdata. World Energy & Climate Statistics – Yearbook 2024. World Energy Consumption Statistics, Enerdata; 2024.
[5] Kumar S, Agarwal A, Kumar A. Financial viability assessment of concentrated solar power technologies under Indian climatic conditions. Sustainable Energy Technologies and Assessments 43 (2021) p 100928. https://doi.org/10.1016/j.seta.2020.100928.
[6] La Republica. Ecuador endurece medidas de racionamiento eléctrico por 12 horas el lunes y martes 2024. https://www.larepublica.co/globoeconomia/ecuador-endurece-medidas-de-racionamiento-electrico-3995853.
[7] Andrade JVB de, Costa VBF da, Bonatto BD, Áquila G, Pamplona E de O, Bhandari R. Perspective under uncertainty and risk in green hydrogen investments: A stochastic approach using Monte Carlo simulation. Int J Hydrogen Energy 49 (2024) p 385–404. https://doi.org/10.1016/j.ijhydene.2023.08.253.
[8] Aquila G, Coelho E de OP, Bonatto BD, Pamplona E de O, Nakamura WT. Perspective of uncertainty and risk from the CVaR-LCOE approach: An analysis of the case of PV microgeneration in Minas Gerais, Brazil. Energy 226 (2021) p 120327. https://doi.org/10.1016/j.energy.2021.120327.
[9] Zou H, Du H, Brown MA, Mao G. Large-scale PV power generation in China: A grid parity and techno-economic analysis. Energy 134 (2017) p 256–68. https://doi.org/10.1016/j.energy.2017.05.192.
[10] Becerra-Fernandez M, Sarmiento AT, Cardenas LM. Sustainability assessment of the solar energy supply chain in Colombia. Energy 282 (2023) p 128735. https://doi.org/10.1016/j.energy.2023.128735.
[11] Perez Gelves JJ, Diaz Florez GA. Methodology to Assess the Implementation of Solar Power Projects in Rural Areas Using AHP: a Case Study of Colombia International Journal of Sustainable Energy Planning and Management 29 (2020) p 69–78. https://doi.org/https://doi.org/10.5278/ijsepm.3592.
[12] Bastidas-Salamanca M, Bayona JG. Pre-feasibility assessment for identifying locations of new offshore wind projects in the Colombian Caribbean. International Journal of Sustainable Energy Planning and Management 32 (2021) p 139–54. https://doi.org/https://doi.org/10.5278/ijsepm.6710.
[13] XM. Reporte integral de sostenibilidad, operación y mercado 2020 n.d.
[14] Quintero Quintero M del C, Isaza Cuervo F. Dependencia hidrológica y regulatoria en la formación de precio de la energía en un sistema hidrodominado: caso sistema eléctrico colombiano. Revista Ingenierías Universidad de Medellín 12 (2013) p 85–96. http://www.scielo.org.co/scielo.php?pid=S1692-33242013000100008&script=sci_arttext
[15] Gómez-Navarro T, Ribó-Pérez D. Assessing the obstacles to the participation of renewable energy sources in the electricity market of Colombia. Renewable and Sustainable Energy Reviews 90 (2018) p 131–41. https://doi.org/10.1016/J.RSER.2018.03.015.
[16] Perez A, Garcia-Rendon JJ. Integration of non-conventional renewable energy and spot price of electricity: A counterfactual analysis for Colombia. Renew Energy 167 (2021) p 146–161. https://doi.org/10.1016/J.RENENE.2020.11.067.
[17] León-Vargas F, García-Jaramillo M, Krejci E. Pre-feasibility of wind and solar systems for residential self-sufficiency in four urban locations of Colombia: Implication of new incentives included in Law 1715. Renew Energy 130 (2019) p 1082–1091. https://doi.org/10.1016/j.renene.2018.06.087.
[18] Granados C, Castañeda M, Zapata S, Mesa F, Aristizábal AJ. Feasibility analysis for the integration of solar photovoltaic technology to the Colombian residential sector through system dynamics modeling. Energy Reports 8 (2022) p 2389–400. https://doi.org/10.1016/j.egyr.2022.01.154.
[19] Martínez-Ruiz Y, Manotas-Duque DF, Ramírez-Malule H. Financial risk assessment of a district cooling system. Energy 278 (2023) p 127879. https://doi.org/10.1016/j.energy.2023.127879.
[20] Chong S, Wu J, Chang IS. Cost accounting and economic competitiveness evaluation of photovoltaic power generation in China - based on the system levelized cost of electricity. Renew Energy 222 (2024) p 119940. https://doi.org/10.1016/j.renene.2024.119940.
[21] Energía Estrategica. Radiografía de la energía solar: Colombia registra en abril 1773 MW fotovoltaicos; 2024.
[22] El Tiempo. Hito en Colombia: el 6,1 % de la energía que se genera en el país proviene de plantas solares; 2024.
[23] Martínez-Ruiz Y, Manotas-Duque DF, Ramírez-Malule H. Evaluation of investment projects in photovoltaic solar energy using the dnpv methodology. International Journal of Energy Economics and Policy 11 (2021) p 180–185. https://doi.org/10.32479/ijeep.10577.
[24] Kumar AG, Sindhy M, Mohan V, Viswanathan R, Sudhakaran A V. An Adaptive Staggered Investment Strategy for promotion of residential rooftop solar PV installations in India. International Journal of Sustainable Energy Planning and Management 37 (2023) p 75–94. https://doi.org/https://doi.org/10.54337/ijsepm.7477.
[25] Xuan A, Shen X, Guo Q, Sun H. A conditional value-at-risk based planning model for integrated energy system with energy storage and renewables. Appl Energy 294 (2021) p 116971. https://doi.org/10.1016/J.APENERGY.2021.116971.
[26] Robles-Algarín C, Castrillo-Fernández L, Restrepo-Leal D. Optimal Site Selection for Solar PV Systems in the Colombian Caribbean: Evaluating Weighting Methods in a TOPSIS Framework. Sustainability (Switzerland) 16 (2024) p 16208761. https://doi.org/10.3390/su16208761.
[27] Hwang KW, Lee CY. Estimating the Deterministic and Stochastic Levelized Cost of the Energy of Fence-Type Agrivoltaics. Energies 17 (2024) p 17081932. https://doi.org/10.3390/en17081932.
[28] Robles Algarín C, Llanos AP, Castro AO. International Journal of Energy Economics and Policy An Analytic Hierarchy Process Based Approach for Evaluating Renewable Energy Sources. International Journal of Energy Economics and Policy 7 (2017) p 38–47. https://www.zbw.eu/econis-archiv/handle/11159/1258
[29] Vose D. Risk analysis: a quantitative guide. John Wiley & Sons; 2008.
[30] Lee CY, Ahn J. Stochastic modeling of the levelized cost of electricity for solar PV. Energies (Basel) 13 (2020) p 13113017. https://doi.org/10.3390/en13113017.
[31] UPME. Información energética n.d. https://www.upme.gov.co/
[32] SinergoxXM. locations and current status of installed/registered solar capacity in Colombia. https://SinergoxXmComCo/Paginas/HomeAspx n.d. https://sinergox.xm.com.co/Paginas/Home.aspx (accessed April 19, 2025).
[33] NASA. Data access viewer. Https://PowerLarcNasaGov/Data-Access-Viewer/ 2024. (accessed April 14, 2025).
[34] Siddikee MN. Effect of daily dividend on arithmetic and logarithmic return. Journal of Finance and Data Science 4 (2018) p 247–72. https://doi.org/10.1016/j.jfds.2018.06.001.
[35] Procolombia. Colombia y su potencial en fuentes renovables n.d. https://investincolombia.com.co/es/recursos/colombia-y-su-potencial-en-fuentes-de-energia-renovables (accessed April 20, 2025).
[36] Procolombia. Colombia travel. Información Práctica Del Clima n.d. https://colombia.travel/es/informacion-practica/clima (accessed April 20, 2025).
[37] Delignette-Muller ML, Dutang C. Journal of Statistical Software fitdistrplus: An R Package for Fitting Distributions. Journal of Statistical Software 64 (2015) p 1-34. https://10.18637/jss.v064.i04
[38] Cullen AC, Frey HC. Probabilistic techniques in exposure assessment: a handbook for dealing with variability and uncertainty in models and inputs. Springer Science & Business Media; 1999.
[39] Vose D. Quantitative Risk Analysis: A Guide to Monte Carlo Simulation Modelling. Wiley; 1996.
[40] D’Agostino RB. Goodness-of-fit-techniques. vol. 68. CRC press; 1986.
[41] IRENA. Renewable power generation cost in 2022. Abu Dhabi; 2023. https://www.irena.org/Publications/2023/Aug/Renewable-Power-Generation-Costs-in-2022
[42] Bancolombia. Actualización de proyecciones económicas Colombia - Entre ilusiones económicas y realidades de mercado. 2023.
[43] IRENA. The cost of financing for renewable power. Abu Dhabi: 2023. https://www.irena.org/Publications/2023/May/The-cost-of-financing-for-renewable-power
[44] Corficolombiana. Rentabilidad esperada del capital propio (Ke). 2023.
[45] Findeter. Energía y Eficiencia Energética KFW. https://WwwFindeterGovCo/Productos-y-Servicios/Lineas-de-Credito-de-Redescuento/Energia-y-Eficiencia-Energetica-KFW 2024.
[46] Departamento Administrativo de la Función Pública. Ley 1715 de 2014. Colombia: 2014. https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=57353
[47] IDEAM. Atlas de radiación solar de Colombia. 2018. https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=57353